132 research outputs found

    A study on torsional vibration attenuation in automotive drivetrains using absorbers with smooth and non-smooth nonlinearities

    Get PDF
    The automotive industry is predominantly driven by legislations on stringent emissions. This has led to the introduction of downsized engines, incorporating turbocharging to maintain output power. As downsized engines have higher combustion pressures, the resulting torsional oscillations (engine order vibrations) are of broadband nature with an increasing severity, which affect noise and vibration response of the drive train system. Palliative devices, such as clutch pre-dampers and dual mass flywheel have been used to mitigate the effect of transmitted engine torsional oscillations. Nevertheless, the effectiveness of these palliative measures is confined to a narrow band of response frequencies. The nonlinear targeted energy transfer is a promising approach to study vibration mitigation within a broader range of frequencies, using nonlinear vibration absorbers (or nonlinear energy sinks – NESs). These devices would either redistribute vibration energy within the modal space of the primary structure, thus dissipating the vibrational energy more efficiently through structural damping, or passively absorb and locally dissipate a part of this energy (in a nearly irreversible manner) from the primary structure. The absence of a linear resonance frequency of an NES, enables its broadband operation (in contrast to the narrowband operation of current linear tuned mass dampers). Parametric studies are reported to determine the effectiveness of various smooth or non-smooth nonlinear stiffness characteristics of such absorbers. A reduced drivetrain model, incorporating single and multiple absorber attachments is used and comparison of the predictions to numerical integrations proves its efficacy

    On the effect of multiple parallel nonlinear absorbers in palliation of torsional response of automotive drivetrain

    Get PDF
    Torsional vibrations transmitted from the engine to the drivetrain system induce a plethora of noise, vibration and harshness (NVH) concerns, such a transmission gear rattle and clutch in-cycle vibration, to name but a few. The main elements of these oscillations are variations in the inertial imbalance and the constituents of combustion power torque, collectively referred to as engine order vibration. To attenuate the effect of these transmitted vibrations and their oscillatory effects in the drive train system, a host of palliative measures are employed in practice, such as clutch pre-dampers, slipping discs, dual mass flywheel and others, all of which operate effectively over a narrow band of frequencies and have various unintended repercussions. These include increased powertrain inertia, installation package space and cost. This paper presents a numerical study of the use of multiple Nonlinear Energy Sinks (NES) as a means of attenuating the torsional oscillations for an extended frequency range and under transient vehicle manoeuvres. Frequency–Energy Plots (FEP) are used to obtain the nonlinear absorber parameters for multiple NES coupled in parallel to the clutch disc of a typical drivetrain configuration. The results obtained show significant reduction in the oscillations of the transmission input shaft, effective over a broad range of response frequencies. It is also noted that the targeted reduction of the acceleration amplitude of the input shaft requires significantly lower NES inertia, compared with the existing palliative measures

    Thrombospondin-1 Contributes to Mortality in Murine Sepsis through Effects on Innate Immunity

    Get PDF
    BACKGROUND:Thrombospondin-1 (TSP-1) is involved in many biological processes, including immune and tissue injury response, but its role in sepsis is unknown. Cell surface expression of TSP-1 on platelets is increased in sepsis and could activate the anti-inflammatory cytokine transforming growth factor beta (TGFβ1) affecting outcome. Because of these observations we sought to determine the importance of TSP-1 in sepsis. METHODOLOGY/PRINCIPAL FINDINGS:We performed studies on TSP-1 null and wild type (WT) C57BL/6J mice to determine the importance of TSP-1 in sepsis. We utilized the cecal ligation puncture (CLP) and intraperitoneal E. coli injection (i.p. E. coli) models of peritoneal sepsis. Additionally, bone-marrow-derived macrophages (BMMs) were used to determine phagocytic activity. TSP-1-/- animals experienced lower mortality than WT mice after CLP. Tissue and peritoneal lavage TGFβ1 levels were unchanged between animals of each genotype. In addition, there is no difference between the levels of major innate cytokines between the two groups of animals. PLF from WT mice contained a greater bacterial load than TSP-1-/- mice after CLP. The survival advantage for TSP-1-/- animals persisted when i.p. E. coli injections were performed. TSP-1-/- BMMs had increased phagocytic capacity compared to WT. CONCLUSIONS:TSP-1 deficiency was protective in two murine models of peritoneal sepsis, independent of TGFβ1 activation. Our studies suggest TSP-1 expression is associated with decreased phagocytosis and possibly bacterial clearance, leading to increased peritoneal inflammation and mortality in WT mice. These data support the contention that TSP-1 should be more fully explored in the human condition

    Correlations Between Gene Expression and Mercury Levels in Blood of Boys With and Without Autism

    Get PDF
    Gene expression in blood was correlated with mercury levels in blood of 2- to 5-year-old boys with autism (AU) compared to age-matched typically developing (TD) control boys. This was done to address the possibility that the two groups might metabolize toxicants, such as mercury, differently. RNA was isolated from blood and gene expression assessed on whole genome Affymetrix Human U133 expression microarrays. Mercury levels were measured using an inductively coupled plasma mass spectrometer. Analysis of covariance (ANCOVA) was performed and partial correlations between gene expression and mercury levels were calculated, after correcting for age and batch effects. To reduce false positives, only genes shared by the ANCOVA models were analyzed. Of the 26 genes that correlated with mercury levels in both AU and TD boys, 11 were significantly different between the groups (P(Diagnosis*Mercury) ≤ 0.05). The expression of a large number of genes (n = 316) correlated with mercury levels in TD but not in AU boys (P ≤ 0.05), the most represented biological functions being cell death and cell morphology. Expression of 189 genes correlated with mercury levels in AU but not in TD boys (P ≤ 0.05), the most represented biological functions being cell morphology, amino acid metabolism, and antigen presentation. These data and those in our companion study on correlation of gene expression and lead levels show that AU and TD children display different correlations between transcript levels and low levels of mercury and lead. These findings might suggest different genetic transcriptional programs associated with mercury in AU compared to TD children

    The lure of postwar London:networks of people, print and organisations

    Get PDF

    El desafío de la administración adecuada de antimicrobianos en pediatría.

    Get PDF
    Background: Antibiotics are among the drugs most commonly prescribed to children in hospitals and communities. Unfortunately, a great number of these prescriptions are unnecessary or inappropriate. Antibiotic abuse and misuse have several negative consequences, including drug-related adverse events, the emergence of multidrug resistant bacterial pathogens, the development of Clostridium difficile infection, the negative impact on microbiota, and undertreatment risks. In this paper, the principle of and strategies for paediatric antimicrobial stewardship (AS) programs, the effects of AS interventions and the common barriers to development and implementation of AS programs are discussed. Discussion: Over the last few years, there have been significant shortages in the development and availability of new antibiotics; therefore, the implementation of strategies to preserve the activity of existing antimicrobial agents has become an urgent public health priority. AS is one such approach. The need for formal AS programs in paediatrics was officially recognized only recently, considering the widespread use of antibiotics in children and the different antimicrobial resistance patterns that these subjects exhibit in comparison to adult and elderly patients. However, not all problems related to the implementation of AS programs among paediatric patients are solved. The most important remaining problems involve educating paediatricians, creating a multidisciplinary interprofessional AS team able to prepare guidelines, monitoring antibiotic prescriptions and defining corrective measures, and the availability of administrative consensuses with adequate financial support. Additionally, the problem of optimizing the duration of AS programs remains unsolved. Further studies are needed to solve the above mentioned problems. Conclusions: In paediatric patients, as in adults, the successful implementation of AS strategies has had a significant impact on reducing targeted- and nontargeted-antimicrobial use by improving the quality of care for hospitalized patients and preventing the emergence of resistance. Considering that rationalization of antibiotic misuse and abuse is the basis for reducing emergence of bacterial resistance and several clinical problems, all efforts must be made to develop multidisciplinary paediatric AS programs in hospital and community settings

    Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet

    Get PDF
    Splenic marginal zone B (MZB) cells, positioned at the interface between circulating blood and lymphoid tissue, detect and respond to blood-borne antigens. Here we show that MZB cells in mice activate a homeostatic program in response to a high-cholesterol diet (HCD) and regulate both the differentiation and accumulation of T follicular helper (TFH) cells. Feeding mice an HCD resulted in upregulated MZB cell surface expression of the immunoregulatory ligand PDL1 in an ATF3-dependent manner and increased the interaction between MZB cells and pre-TFH cells, leading to PDL1-mediated suppression of TFH cell motility, alteration of TFH cell differentiation, reduced TFH abundance and suppression of the proatherogenic TFH response. Our findings reveal a previously unsuspected role for MZB cells in controlling the TFH–germinal center response to a cholesterol-rich diet and uncover a PDL1-dependent mechanism through which MZB cells use their innate immune properties to limit an exaggerated adaptive immune response.This work was supported by BHF grant no. PG/15/76/31756, BHF grant no. PG/13/73/30466, ERC grant no. 2891164 and EC FP7 VIA grant no. HEALTH-F4- 2013-603131 to Z.M. and by SAF2013-45543-R from the Spanish Ministry of Economy and Competitiveness (MINECO) to J.L.d.l.P. M.N. was first supported by a Sara Borrell grant (CD09/00452) from the Instituto Nacional de Salud Carlos III (Spain) and then by a 2-year BHF Project Grant. M.N. has also received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 608765. The Wellcome Trust supported the Cambridge Mouse Biochemistry Laboratory

    Review of literature on decision support systems for natural hazard risk reduction: Current status and future research directions

    Get PDF
    corecore