1,510 research outputs found

    Altered Cortical Gyrification in Adults Who Were Born Very Preterm and Its Associations With Cognition and Mental Health

    Get PDF
    Background: The last trimester of pregnancy is a critical period for the establishment of cortical gyrification, and altered folding patterns have been reported following very preterm birth (\u3c 33 weeks of gestation) in childhood and adolescence. However, research is scant on the persistence of such alterations in adulthood and their associations with cognitive and psychiatric outcomes. Methods: We studied 79 very preterm and 81 age-matched full-term control adults. T1-weighted magnetic resonance images were used to measure a local gyrification index (LGI), indicating the degree of folding across multiple vertices of the reconstructed cortical surface. Group and group-by-sex LGI differences were assessed by means of per-vertex adjustment for cortical thickness and overall intracranial volume. Within-group correlations were also computed between LGI and functional outcomes, including general intelligence (IQ) and psychopathology. Results: Very preterm adults had significantly reduced LGI in extensive cortical regions encompassing the frontal, anterior temporal, and occipitoparietal lobes. Alterations in lateral fronto-temporal-parietal and medial occipitoparietal regions were present in both men and women, although men showed more extensive alterations. In both very preterm and control adults, higher LGI was associated with higher IQ and lower psychopathology scores, with the spatial distribution of these associations substantially differing between the two groups. Conclusions: Very preterm adults’ brains are characterized by significant and widespread local hypogyria, and these alterations might be implicated in cognitive and psychiatric outcomes. Gyrification reflects an early developmental process and provides a fingerprint for very preterm birth

    Metastable Precursor Structures in Hydrogen-infused Super Duplex Stainless Steel Microstructure – An Operando Diffraction Experiment

    Get PDF
    We report the evolution of metastable precursor structures during hydrogen infusion in the near-surface region of a super duplex stainless steel. Grazing-incidence x-ray diffraction was employed to monitor, operando, the lattice degradation of the austenite and ferrite phases. Electrochemical hydrogen charging resulted in the splitting of the diffraction peaks of the austenite phase, suggesting the evolution of a metastable precursor structure. This may be explained by the formation of quasi-hydrides, which convert back into the austenite parent structure during hydrogen effusion. The ferrite showed less lattice deformation than the austenite and no phase transformation

    A multimodal imaging study of recognition memory in very preterm born adults

    Get PDF
    Very preterm (<32 weeks of gestation) birth is associated with structural brain alterationsand memory impairments throughout childhood and adolescence. Here, we used functional MRI(fMRI) to study the neuroanatomy of recognition memory in 49 very preterm-born adults and 50 con-trols (mean age: 30 years) during completion of a task involving visual encoding and recognition ofabstract pictures. T1-weighted and diffusion-weighted images were also collected. Bilateral hippocam-pal volumes were calculated and tractography of the fornix and cingulum was performed and assessedin terms of volume and hindrance modulated orientational anisotropy (HMOA). Online recognitionmemory task performance, assessed with A scores, was poorer in the very preterm compared with thecontrol group. Analysis of fMRI data focused on differences in neural activity between the recognitionand encoding trials. Very preterm born adults showed decreased activation in the right middle frontalgyrus and posterior cingulate cortex/precuneus and increased activation in the left inferior frontalgyrus and bilateral lateral occipital cortex (LOC) compared with controls. Hippocampi, fornix and cin-gulum volume was significantly smaller and fornix HMOA was lower in very preterm adults. Amongall the structural and functional brain metrics that showed statistically significant group differences,LOC activation was the best predictor of online task performance (P 5 0.020). In terms of associationbetween brain function and structure, LOC activation was predicted by fornix HMOA in the pretermgroup only (P 5 0.020). These results suggest that neuroanatomical alterations in very preterm bornindividuals may be underlying their poorer recognition memory performance

    Exploring Hydride Formation in Stainless Steel Revisits Theory of Hydrogen Embrittlement

    Full text link
    Various mechanisms have been proposed for hydrogen embrittlement, but the causation of hydrogen-induced material degradation has remained unclear. This work shows hydrogen embrittlement due to phase instability (decomposition). In-situ diffraction measurements revealed metastable hydrides formed in stainless steel, typically declared as a non-hydride forming material. Hydride formation is possible by increasing the hydrogen chemical potential during electrochemical charging and low defect formation energy of hydrogen interstitials. Our findings demonstrate that hydrogen-induced material degradation can only be understood if measured in situ and in real-time during the embrittlement process.Comment: 31 Pages, 18 Figures, Preprin

    Peripheral nervous system manifestations in a Sandhoff disease mouse model: nerve conduction, myelin structure, lipid analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sandhoff disease is an inherited lysosomal storage disease caused by a mutation in the gene for the β-subunit (<it>Hexb </it>gene) of β-hexosaminidase A (αβ) and B (ββ). The β-subunit together with the GM2 activator protein catabolize ganglioside GM2. This enzyme deficiency results in GM2 accumulation primarily in the central nervous system. To investigate how abnormal GM2 catabolism affects the peripheral nervous system in a mouse model of Sandhoff disease (<it>Hexb-/-</it>), we examined the electrophysiology of dissected sciatic nerves, structure of central and peripheral myelin, and lipid composition of the peripheral nervous system.</p> <p>Results</p> <p>We detected no significant difference in signal impulse conduction velocity or any consistent change in the frequency-dependent conduction slowing and failure between freshly dissected sciatic nerves from the <it>Hexb</it>+/- and <it>Hexb</it>-/- mice. The low-angle x-ray diffraction patterns from freshly dissected sciatic and optic nerves of <it>Hexb</it>+/- and <it>Hexb</it>-/- mice showed normal myelin periods; however, <it>Hexb</it>-/- mice displayed a ~10% decrease in the relative amount of compact optic nerve myelin, which is consistent with the previously established reduction in myelin-enriched lipids (cerebrosides and sulfatides) in brains of <it>Hexb-/- </it>mice. Finally, analysis of lipid composition revealed that GM2 content was present in the sciatic nerve of the <it>Hexb</it>-/- mice (undetectable in <it>Hexb</it>+/-).</p> <p>Conclusion</p> <p>Our findings demonstrate the absence of significant functional, structural, or compositional abnormalities in the peripheral nervous system of the murine model for Sandhoff disease, but do show the potential value of integrating multiple techniques to evaluate myelin structure and function in nervous system disorders.</p

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore