110 research outputs found

    Метод трехмерной триангуляции в задачах кластерного анализа

    Get PDF
    Представлен метод многомерного шкалирования на основе трехмерной триангуляции. Рассмотрена возможность качественного сохранения геометрической структуры множества объектов при отображении многомерного пространства в трехмерное. Приведены результаты применения метода для решения задачи кластеризации на примере периодической системы элементов Д.И. Менделеева. Экспериментально показано, что по критериям качества кластеризации предложенный метод более эффективен в сравнении с методами k-средних и нейронной сети Кохонена.Представлено метод багатовимірного шкалювання на основі тривимірної тріангуляції. Розглянуто можливість якісного збереження геометричної структури множини об’єктів при відображенні багатовимірного простору в тривимірне. Наведено результати застосування методу для вирішення задачі кластеризації на прикладі періодичної системи елементів Д.І. Менделєєва. Експериментально показано, що за критеріями якості кластеризації запропонований метод більш ефективний у порівнянні з методами k-середніх та нейронної мережі Кохонена.The method of multidimensional scaling on the basis of the 3-D triangulation is presented. The qualitative preservation possibility of geometrical structure of objects by multidimensional space mapping to three- dimensional space is considered. The results of application of the method for clustering problem of the Mendeleyev periodic table are presented. It is experimentally shown, that the presented method is more effective by criteria of clustering quality in comparison with the methods of k-averages and the Kohonen neural network

    Challenges and Obstacles for a Bouncing Universe in Brane Models

    Get PDF
    A Brane evolving in the background of a charged AdS black-hole displays in general a bouncing behaviour with a smooth transition from a contracting to an expanding phase. We examine in detail the conditions and consequences of this behaviour in various cases. For a cosmological-constant-dominated Brane, we obtain a singularity-free, inflationary era which is shown to be compatible only with an intermediate-scale fundamental Planck mass. For a radiation-dominated Brane, the bouncing behaviour can occur only for background-charge values exceeding those allowed for non-extremal black holes. For a matter-dominated Brane, the black-hole mass affects the proper volume or the expansion rate of the Brane. We also consider the Brane evolving in an asymmetric background of two distinct charged AdS black hole spacetimes being bounded by the Brane and find that, in the case of an empty critical Brane, bouncing behaviour occurs only if the black-hole mass difference is smaller than a certain value. The effects of a Brane curvature term on the bounce at early and late times are also investigated.Comment: 23 pages, Latex file, comments and references added, version to appear in Phys. Rev.

    PYTHIA 6.4 Physics and Manual

    Full text link
    The PYTHIA program can be used to generate high-energy-physics `events', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. This physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.Comment: 576 pages, no figures, uses JHEP3.cls. The code and further information may be found on the PYTHIA web page: http://www.thep.lu.se/~torbjorn/Pythia.html Changes in version 2: Mistakenly deleted section heading for "Physics Processes" reinserted, affecting section numbering. Minor updates to take into account referee comments and new colour reconnection option

    The Standard Cosmological Model

    Full text link
    The Standard Model of Particle Physics (SMPP) is an enormously successful description of high energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire 3-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realisation of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision in order to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas which might explain the values of its parameters. Although it is natural to see analogies between the two Standard Models, some intrinsic differences also exist, which are discussed here. Nevertheless, a truly fundamental theory will have to explain both the SMPP and SMC, and this must include an appreciation of which elements are deterministic and which are accidental. Considering different levels of stochasticity within cosmology may make it easier to accept that physical parameters in general might have a non-deterministic aspect.Comment: 16 pages, 2 figures, invited talk at "Theory Canada 1", June 2005, Vancouve

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p

    Searches for lepton-flavour-violating decays of the Higgs boson in s=13\sqrt{s}=13 TeV pp\mathit{pp} collisions with the ATLAS detector

    Get PDF
    This Letter presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ , performed with the ATLAS detector at the LHC. The searches are based on a data sample of proton–proton collisions at a centre-of-mass energy √s = 13 TeV, corresponding to an integrated luminosity of 36.1 fb−1. No significant excess is observed above the expected background from Standard Model processes. The observed (median expected) 95% confidence-level upper limits on the leptonflavour-violating branching ratios are 0.47% (0.34+0.13−0.10%) and 0.28% (0.37+0.14−0.10%) for H → eτ and H → μτ , respectively.publishedVersio

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb⁻¹ of pp collisions at \sqrts = 13 TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5). © 2019 The Author(s
    corecore