355 research outputs found
Speed and Accuracy of Static Image Discrimination by Rats
When discriminating dynamic noisy sensory signals, human and primate subjects
achieve higher accuracy when they take more time to decide, an effect
attributed to accumulation of evidence over time to overcome neural noise. We
measured the speed and accuracy of twelve freely behaving rats discriminating
static, high contrast photographs of real-world objects for water reward in a
self-paced task. Response latency was longer in correct trials compared to
error trials. Discrimination accuracy increased with response latency over the
range of 500-1200ms. We used morphs between previously learned images to vary
the image similarity parametrically, and thereby modulate task difficulty from
ceiling to chance. Over this range we find that rats take more time before
responding in trials with more similar stimuli. We conclude that rats'
perceptual decisions improve with time even in the absence of temporal
information in the stimulus, and that rats modulate speed in response to
discrimination difficulty to balance speed and accuracy
SQG-Differential Evolution for difficult optimization problems under a tight function evaluation budget
In the context of industrial engineering, it is important to integrate
efficient computational optimization methods in the product development
process. Some of the most challenging simulation-based engineering design
optimization problems are characterized by: a large number of design variables,
the absence of analytical gradients, highly non-linear objectives and a limited
function evaluation budget. Although a huge variety of different optimization
algorithms is available, the development and selection of efficient algorithms
for problems with these industrial relevant characteristics, remains a
challenge. In this communication, a hybrid variant of Differential Evolution
(DE) is introduced which combines aspects of Stochastic Quasi-Gradient (SQG)
methods within the framework of DE, in order to improve optimization efficiency
on problems with the previously mentioned characteristics. The performance of
the resulting derivative-free algorithm is compared with other state-of-the-art
DE variants on 25 commonly used benchmark functions, under tight function
evaluation budget constraints of 1000 evaluations. The experimental results
indicate that the new algorithm performs excellent on the 'difficult' (high
dimensional, multi-modal, inseparable) test functions. The operations used in
the proposed mutation scheme, are computationally inexpensive, and can be
easily implemented in existing differential evolution variants or other
population-based optimization algorithms by a few lines of program code as an
non-invasive optional setting. Besides the applicability of the presented
algorithm by itself, the described concepts can serve as a useful and
interesting addition to the algorithmic operators in the frameworks of
heuristics and evolutionary optimization and computing
Learning Priors for Bayesian Computations in the Nervous System
Our nervous system continuously combines new information from our senses with information it has acquired throughout life. Numerous studies have found that human subjects manage this by integrating their observations with their previous experience (priors) in a way that is close to the statistical optimum. However, little is known about the way the nervous system acquires or learns priors. Here we present results from experiments where the underlying distribution of target locations in an estimation task was switched, manipulating the prior subjects should use. Our experimental design allowed us to measure a subject's evolving prior while they learned. We confirm that through extensive practice subjects learn the correct prior for the task. We found that subjects can rapidly learn the mean of a new prior while the variance is learned more slowly and with a variable learning rate. In addition, we found that a Bayesian inference model could predict the time course of the observed learning while offering an intuitive explanation for the findings. The evidence suggests the nervous system continuously updates its priors to enable efficient behavior
Of monkeys and men:Impatience in perceptual decision-making
For decades sequential sampling models have successfully accounted for human and monkey decision-making, relying on the standard assumption that decision makers maintain a pre-set decision standard throughout the decision process. Based on the theoretical argument of reward rate maximization, some authors have recently suggested that decision makers become increasingly impatient as time passes and therefore lower their decision standard. Indeed, a number of studies show that computational models with an impatience component provide a good fit to human and monkey decision behavior. However, many of these studies lack quantitative model comparisons and systematic manipulations of rewards. Moreover, the often-cited evidence from single-cell recordings is not unequivocal and complimentary data from human subjects is largely missing. We conclude that, despite some enthusiastic calls for the abandonment of the standard model, the idea of an impatience component has yet to be fully established; we suggest a number of recently developed tools that will help bring the debate to a conclusive settlement
Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons
The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex
Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making
<div><p>Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making.</p></div
Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton-proton collisions at root s=13TeV
A search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks is performed in proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9 fb(-1). The signal is characterized by a large missing transverse momentum recoiling against a bottom quark-antiquark system that has a large Lorentz boost. The number of events observed in the data is consistent with the standard model background prediction. Results are interpreted in terms of limits both on parameters of the type-2 two-Higgs doublet model extended by an additional light pseudoscalar boson a (2HDM+a) and on parameters of a baryonic Z simplified model. The 2HDM+a model is tested experimentally for the first time. For the baryonic Z model, the presented results constitute the most stringent constraints to date.Peer reviewe
A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution
We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯
- …