68 research outputs found

    Conformal Invariance and Degrees of Freedom in the QCD String

    Full text link
    We demonstrate that the Hagedorn-like growth of the number of observed meson states can be used to constrain the degrees of freedom of the underlying effective QCD string. We find that the temperature relevant for such string theories is not given by the usual Hagedorn value TH160T_H\approx 160 MeV, but is considerably higher. This resolves an apparent conflict with the results from a static quark-potential analysis, and suggests that conformal invariance and modular invariance are indeed reflected in the hadronic spectrum. We also find that the D=2D_\perp=2 scalar string is in excellent agreement with data.Comment: 13 pages (Standard LaTeX); --> replaced version emphasizes new results, and agrees with version to appear in Physical Review Letters (Jan 1994

    Validation of the transplant conditioning intensity (TCI) index for allogeneic hematopoietic cell transplantation

    Get PDF
    The intensity of the conditioning regimen given before allogeneic hematopoietic cell transplantation (allo-HCT) can vary substantially. To confirm the ability of the recently developed transplant conditioning intensity (TCI) score to stratify the preparative regimens of allo-HCT, we used an independent and contemporary patient cohort of 4060 transplant recipients with acute myeloid leukemia meeting inclusion criteria from the discovery study (allo-HCT in first complete remission, matched donor), but who were allografted in a more recent period (2018–2021) and were one decade older (55–75 years, median 63.4 years), we assigned them to a TCI category (low n = 1934, 48%; intermediate n = 1948, 48%, high n = 178, 4%) according to the calculated TCI score ([1–2], [2.5–3.5], [4–6], respectively), and examined the validity of the TCI category in predicting early non-relapse mortality (NRM), 2-year NRM and relapse (REL). In the unadjusted comparison, the TCI index provided a significant risk stratification for d100 and d180 NRM, NRM and REL risk. In the multivariate analysis adjusted for significant variables, there was an independent association of TCI with early NRM, NRM and REL. In summary, we confirm in contemporary treated patients that TCI reflects the conditioning regimen related morbidity and anti-leukemic efficacy satisfactorily and across other established prognostic factors.</p

    Gastrointestinal Bleeding in Patients With Atrial Fibrillation Treated With Rivaroxaban or Warfarin:ROCKET AF Trial

    Get PDF
    AbstractBackgroundGastrointestinal (GI) bleeding is a common complication of oral anticoagulation.ObjectivesThis study evaluated GI bleeding in patients who received at least 1 dose of the study drug in the on-treatment arm of the ROCKET AF (Rivaroxaban Once-daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation) trial.MethodsThe primary outcome was adjudicated GI bleeding reported from first to last drug dose + 2 days. Multivariable modeling was performed with pre-specified candidate predictors.ResultsOf 14,236 patients, 684 experienced GI bleeding during follow-up. These patients were older (median age 75 years vs. 73 years) and less often female. GI bleeding events occurred in the upper GI tract (48%), lower GI tract (23%), and rectum (29%) without differences between treatment arms. There was a significantly higher rate of major or nonmajor clinical GI bleeding in rivaroxaban- versus warfarin-treated patients (3.61 events/100 patient-years vs. 2.60 events/100 patient-years; hazard ratio: 1.42; 95% confidence interval: 1.22 to 1.66). Severe GI bleeding rates were similar between treatment arms (0.47 events/100 patient-years vs. 0.41 events/100 patient-years; p = 0.39; 0.01 events/100 patient-years vs. 0.04 events/100 patient-years; p = 0.15, respectively), and fatal GI bleeding events were rare (0.01 events/100 patient-years vs. 0.04 events/100 patient-years; 1 fatal events vs. 5 fatal events total). Independent clinical factors most strongly associated with GI bleeding were baseline anemia, history of GI bleeding, and long-term aspirin use.ConclusionsIn the ROCKET AF trial, rivaroxaban increased GI bleeding compared with warfarin. The absolute fatality rate from GI bleeding was low and similar in both treatment arms. Our results further illustrate the need for minimizing modifiable risk factors for GI bleeding in patients on oral anticoagulation

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Incidence of SARS-CoV-2 in people with cystic fibrosis in Europe between February and June 2020

    Get PDF
    Background Viral infections can cause significant morbidity in cystic fibrosis (CF). The current Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic could therefore have a serious impact on the health of people with CF (pwCF). Methods We used the 38-country European Cystic Fibrosis Society Patient Registry (ECFSPR) to collect case data about pwCF and SARS-CoV-2 infection. Results Up to 30 June 2020, 16 countries reported 130 SARS-CoV-2 cases in people with CF, yielding an incidence of 2.70/1000 pwCF. Incidence was higher in lung-transplanted patients (n=23) versus non-transplanted patients (n=107) (8.43 versus 2.36 cases/1000). Incidence was higher in pwCF versus the age-matched general population in the age groups <15, 15-24, and 25-49 years (p<0.001), with similar trends for pwCF with and without lung transplant. Compared to the general population, pwCF (regardless of transplantation status) had significantly higher rates of admission to hospital for all age groups with available data, and higher rates of intensive care, although not statistically significant. Most pwCF recovered (96.2%), however 5 died, of whom 3 were lung transplant recipients. The case fatality rate for pwCF (3.85%, 95% CI: 1.26-8.75) was non-significantly lower than that of the general population (7.46%; p=0.133). Conclusions SARS-CoV-2 infection can result in severe illness and death for pwCF, even for younger patients and especially for lung transplant recipients. PwCF should continue to shield from infection and should be prioritized for vaccination

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore