95 research outputs found

    Online self-affirmation increases fruit and vegetable consumption in groups at high risk of low intake

    Get PDF
    Background This study tested the efficacy of self-affirmation in promoting fruit and vegetable consumption in a sample of participants comprising two groups at high risk of low consumption: young adults and mothers of school-aged children with low social economic status (SES). Methods Baseline fruit and vegetable consumption was recorded for 85 participants (n = 26 mothers with low SES). Following randomisation to condition (Self-Affirmed or Non-Affirmed), participants viewed targeted, online, health recommendations about fruit and vegetable consumption. Fruit and vegetable intake was reported online every day for the following seven days. Results Self-affirmed participants reported consuming significantly more portions of fruit and vegetables (SA M = 3.96, NA M = 2.81). Analyses of simple slopes indicated that the effect was greatest amongst lowest baseline consumers. Conclusions The findings demonstrate the efficacy of self-affirmation in increasing fruit and vegetable consumption in individuals who are at risk of having a low intake and whose consumption put them at the greatest risk of negative health outcomes. Application of these findings could help to reduce health care costs, through the use of cost-effective online interventions and reductions in treatment costs. Further research is needed to capitalise on the increased tailoring that online intervention allows in order to optimise the effects of self-affirmation

    Critical review of behaviour change techniques applied in intervention studies to improve cooking skills and food skills among adults

    Get PDF
    BACKGROUND: Cooking and food skills interventions have grown in popularity; however, there is a lack of transparency as to how these interventions were designed, highlighting a need to identify and understand the mechanisms of behavior change so that effective components may be introduced in future work. This study critiques cooking and food skills interventions in relation to their design, behavior change techniques (BCTs), theoretical underpinnings, and outcomes. METHODS: A 40-item CALO-RE taxonomy was used to examine the components of 59 cooking and food skills interventions identified by two systematic reviews. Studies were coded by three independent coders. RESULTS: The three most frequently occurring BCTs identified were #1 Provide information on consequences of behavior in general; #21 Provide instruction on how to perform the behavior; and #26 Prompt Practice. Fifty-six interventions reported positive short-term outcomes. Only 14 interventions reported long-term outcomes containing BCTs relating to information provision. CONCLUSION: This study reviewed cooking and food skills interventions highlighting the most commonly used BCTs, and those associated with long-term positive outcomes for cooking skills and diet. This study indicates the potential for using the BCT CALO-RE taxonomy to inform the design, planning, delivery and evaluation of future interventions

    Children Consuming Cassava as a Staple Food are at Risk for Inadequate Zinc, Iron, and Vitamin A Intake

    Get PDF
    Cassava contains little zinc, iron, and β-carotene, yet it is the primary staple crop of over 250 million Africans. This study used a 24-hour dietary recall to test the hypothesis that among healthy children aged 2–5 years in Nigeria and Kenya, cassava’s contribution to the childrens’ daily diets is inversely related to intakes of zinc, iron, and vitamin A. Dietary and demographic data and anthropometric measurements were collected from 449 Kenyan and 793 Nigerian children. Among Kenyan children 89% derived at least 25% of their dietary energy from cassava, while among the Nigerian children 31% derived at least 25% of energy from cassava. Spearman’s correlation coefficient between the fraction of dietary energy obtained from cassava and vitamin A intake was r = −0.15, P < 0.0001, zinc intake was r = −0.11, P < 0.0001 and iron intake was r = −0.36, P < 0.0001. In Kenya, 59% of children consumed adequate vitamin A, 22% iron, and 31% zinc. In Nigeria, 17% of children had adequate intake of vitamin A, 57% iron, and 41% zinc. Consumption of cassava is a risk factor for inadequate vitamin A, zinc and/or iron intake

    Consuming cassava as a staple food places children 2-5 years old at risk for inadequate protein intake, an observational study in Kenya and Nigeria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inadequate protein intake is known to be deleterious in animals. Using WHO consensus documents for human nutrient requirements, the protein:energy ratio (P:E) of an adequate diet is > 5%. Cassava has a very low protein content. This study tested the hypothesis that Nigerian and Kenyan children consuming cassava as their staple food are at greater risk for inadequate dietary protein intake than those children who consume less cassava.</p> <p>Methods</p> <p>A 24 hour dietary recall was used to determine the food and nutrient intake of 656 Nigerian and 449 Kenyan children aged 2-5 years residing in areas where cassava is a staple food. Anthropometric measurements were conducted. Diets were scored for diversity using a 12 point score. Pearson's Correlation Coefficients were calculated to relate the fraction of dietary energy obtained from cassava with protein intake, P:E, and dietary diversity.</p> <p>Results</p> <p>The fraction of dietary energy obtained from cassava was > 25% in 35% of Nigerian children and 89% of Kenyan children. The mean dietary diversity score was 4.0 in Nigerian children and 4.5 in Kenyan children, although the mean number of different foods consumed on the survey day in Nigeria was greater than Kenya, 7.0 compared to 4.6. 13% of Nigerian and 53% of Kenyan children surveyed had inadequate protein intake. The fraction of dietary energy derived from cassava was negatively correlated with protein intake, P:E, and dietary diversity. Height-for age z score was directly associated with protein intake and negatively associated with cassava consumption using regression modeling that controlled for energy and zinc intake.</p> <p>Conclusions</p> <p>Inadequate protein intake was found in the diets of Nigerian and Kenyan children consuming cassava as a staple food. Inadequate dietary protein intake is associated with stunting in this population. Interventions to increase protein intake in this vulnerable population should be the focus of future work.</p

    Should weight loss and maintenance programmes be designed differently for men? A systematic review of long-term randomised controlled trials presenting data for men and women: The ROMEO project.

    Get PDF
    We systematically reviewed the randomised controlled trial (RCT) evidence for long-term (≥12 months) weight management interventions for obese men in contrast to women to help understand whether programmes should be designed differently for men. We searched 11 databases up to October 2014. Twenty-two RCTs reported data separately for men and women in weight loss or weight maintenance interventions. We found men were under-represented in RCTs of weight loss interventions open to both sexes. Men comprised 36% of participants (4771 from 13,305 participants). Despite this, men were 11% (95% CI 8-14%, p<0.001) more likely to be trial completers compared to women. The trials did not report service user consultation and none were designed to investigate whether men and women responded differently to given interventions. Our meta-analysis of 13 trials showed no significant difference in weight loss between men and women, either for weight loss in kg (p=0.90) or percentage weight loss (p=0.78), although men tended to lose more weight with intensive low fat reducing diets, with or without meal replacements, and structured physical activity/exercise programmes than women. Orlistat was less beneficial for men for weight maintenance. Individual support and tailoring appeared more helpful for men than women. We found evidence that men and women respond differently to, and have different preferences for, varying types of weight management programme. We suggest that it is important to understand men's views on weight loss, as this is likely to also improve the uptake and effectiveness of programmes for men

    Validity of Internet-Based Longitudinal Study Data:The elephant in the virtual room

    Get PDF
    Background: Internet-based data collection relies on well-designed and validated questionnaires. The theory behind designing and validating questionnaires is well described, but few practical examples of how to approach validation are available in the literature.Objective: We aimed to validate data collected in an ongoing Internet-based longitudinal health study through direct visits to participants and recall of their health records. We demonstrate that despite extensive pre-planning, social desirability can still affect data in unexpected ways and that anticipation of poor quality data may be confounded by positive validation.Methods: Dogslife is a large-scale, Web-based longitudinal study of canine health, in which owners of Labrador Retrievers were recruited and questioned at regular intervals about the lifestyle and health of their dogs using an Internet-based questionnaire. The Dogslife questionnaire predominantly consists of closed-answer questions. In our work, two separate validation methodologies were used: (1) direct interviews with 43 participants during visits to their households and (2) comparison of owner-entered health reports with 139 historical health records.Results: Our results indicate that user-derived measures should not be regarded as a single category; instead, each measurement should be considered separately as each presents its own challenge to participants. We recommend trying to ascertain the extent of recall decay within a study and, if necessary, using this to guide data collection timepoints and analyses. Finally, we recommend that multiple methods of communication facilitate validation studies and aid cohort engagement.Conclusions: Our study highlighted how the theory underpinning online questionnaire design and validation translates into practical data issues when applied to Internet-based studies. Validation should be regarded as an extension of questionnaire design, and that validation work should commence as soon as sufficient data are available. We believe that validation is a crucial step and hope our suggested guidelines will help facilitate validation of other Internet-based cohort studies

    Effects of total fat intake on body fatness in adults

    Get PDF
    Background: The ideal proportion of energy from fat in our food and its relation to body weight is not clear. In order to prevent overweight and obesity in the general population, we need to understand the relationship between the proportion of energy from fat and resulting weight and body fatness in the general population. Objectives: To assess the effects of proportion of energy intake from fat on measures of body fatness (including body weight, waist circumference, percentage body fat and body mass index) in people not aiming to lose weight, using all appropriate randomised controlled trials (RCTs) of at least six months duration. Search methods: We searched CENTRAL, MEDLINE, Embase, Clinicaltrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP) to October 2019. We did not limit the search by language. Selection criteria: Trials fulfilled the following criteria: 1) randomised intervention trial, 2) included adults aged at least 18 years, 3) randomised to a lower fat versus higher fat diet, without the intention to reduce weight in any participants, 4) not multifactorial and 5) assessed a measure of weight or body fatness after at least six months. We duplicated inclusion decisions and resolved disagreement by discussion or referral to a third party. Data collection and analysis: We extracted data on the population, intervention, control and outcome measures in duplicate. We extracted measures of body fatness (body weight, BMI, percentage body fat and waist circumference) independently in duplicate at all available time points. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity, funnel plot analyses and GRADE assessment. Main results: We included 37 RCTs (57,079 participants). There is consistent high-quality evidence from RCTs that reducing total fat intake results in small reductions in body fatness; this was seen in almost all included studies and was highly resistant to sensitivity analyses (GRADE high-consistency evidence, not downgraded). The effect of eating less fat (compared with higher fat intake) is a mean body weight reduction of 1.4 kg (95% confidence interval (CI) -1.7 to -1.1 kg, in 53,875 participants from 26 RCTs, I2 = 75%). The heterogeneity was explained in subgrouping and meta-regression. These suggested that greater weight loss results from greater fat reductions in people with lower fat intake at baseline, and people with higher body mass index (BMI) at baseline. The size of the effect on weight does not alter over time and is mirrored by reductions in BMI (MD -0.5 kg/m2, 95% CI -0.6 to -0.3, 46,539 participants in 14 trials, I2 = 21%), waist circumference (MD -0.5 cm, 95% CI -0.7 to -0.2, 16,620 participants in 3 trials; I2 = 21%), and percentage body fat (MD -0.3% body fat, 95% CI -0.6 to 0.00, P = 0.05, in 2350 participants in 2 trials; I2 = 0%). There was no suggestion of harms associated with low fat diets that might mitigate any benefits on body fatness. The reduction in body weight was reflected in small reductions in LDL (-0.13 mmol/L, 95% CI -0.21 to -0.05), and total cholesterol (-0.23 mmol/L, 95% CI -0.32 to -0.14), with little or no effect on HDL cholesterol (-0.02 mmol/L, 95% CI -0.03 to 0.00), triglycerides (0.01 mmol/L, 95% CI -0.05 to 0.07), systolic (-0.75 mmHg, 95% CI -1.42 to -0.07) or diastolic blood pressure(-0.52 mmHg, 95% CI -0.95 to -0.09), all GRADE high-consistency evidence or quality of life (0.04, 95% CI 0.01 to 0.07, on a scale of 0 to 10, GRADE low-consistency evidence). Authors' conclusions: Trials where participants were randomised to a lower fat intake versus a higher fat intake, but with no intention to reduce weight, showed a consistent, stable but small effect of low fat intake on body fatness: slightly lower weight, BMI, waist circumference and percentage body fat compared with higher fat arms. Greater fat reduction, lower baseline fat intake and higher baseline BMI were all associated with greater reductions in weight. There was no evidence of harm to serum lipids, blood pressure or quality of life, but rather of small benefits or no effect

    Reduction in saturated fat intake for cardiovascular disease

    Get PDF
    BACKGROUND: Reducing saturated fat reduces serum cholesterol, but effects on other intermediate outcomes may be less clear. Additionally, it is unclear whether the energy from saturated fats eliminated from the diet are more helpfully replaced by polyunsaturated fats, monounsaturated fats, carbohydrate or protein. OBJECTIVES: To assess the effect of reducing saturated fat intake and replacing it with carbohydrate (CHO), polyunsaturated (PUFA), monounsaturated fat (MUFA) and/or protein on mortality and cardiovascular morbidity, using all available randomised clinical trials. SEARCH METHODS: We updated our searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid) and Embase (Ovid) on 15 October 2019, and searched Clinicaltrials.gov and WHO International Clinical Trials Registry Platform (ICTRP) on 17 October 2019. SELECTION CRITERIA: Included trials fulfilled the following criteria: 1) randomised; 2) intention to reduce saturated fat intake OR intention to alter dietary fats and achieving a reduction in saturated fat; 3) compared with higher saturated fat intake or usual diet; 4) not multifactorial; 5) in adult humans with or without cardiovascular disease (but not acutely ill, pregnant or breastfeeding); 6) intervention duration at least 24 months; 7) mortality or cardiovascular morbidity data available. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed inclusion, extracted study data and assessed risk of bias. We performed random-effects meta-analyses, meta-regression, subgrouping, sensitivity analyses, funnel plots and GRADE assessment. MAIN RESULTS: We included 15 randomised controlled trials (RCTs) (16 comparisons, ~59,000 participants), that used a variety of interventions from providing all food to advice on reducing saturated fat. The included long-term trials suggested that reducing dietary saturated fat reduced the risk of combined cardiovascular events by 21% (risk ratio (RR) 0.79; 95% confidence interval (CI) 0.66 to 0.93, 11 trials, 53,300 participants of whom 8% had a cardiovascular event, I² = 65%, GRADE moderate-quality evidence). Meta-regression suggested that greater reductions in saturated fat (reflected in greater reductions in serum cholesterol) resulted in greater reductions in risk of CVD events, explaining most heterogeneity between trials. The number needed to treat for an additional beneficial outcome (NNTB) was 56 in primary prevention trials, so 56 people need to reduce their saturated fat intake for ~four years for one person to avoid experiencing a CVD event. In secondary prevention trials, the NNTB was 32. Subgrouping did not suggest significant differences between replacement of saturated fat calories with polyunsaturated fat or carbohydrate, and data on replacement with monounsaturated fat and protein was very limited. We found little or no effect of reducing saturated fat on all-cause mortality (RR 0.96; 95% CI 0.90 to 1.03; 11 trials, 55,858 participants) or cardiovascular mortality (RR 0.95; 95% CI 0.80 to 1.12, 10 trials, 53,421 participants), both with GRADE moderate-quality evidence. There was little or no effect of reducing saturated fats on non-fatal myocardial infarction (RR 0.97, 95% CI 0.87 to 1.07) or CHD mortality (RR 0.97, 95% CI 0.82 to 1.16, both low-quality evidence), but effects on total (fatal or non-fatal) myocardial infarction, stroke and CHD events (fatal or non-fatal) were all unclear as the evidence was of very low quality. There was little or no effect on cancer mortality, cancer diagnoses, diabetes diagnosis, HDL cholesterol, serum triglycerides or blood pressure, and small reductions in weight, serum total cholesterol, LDL cholesterol and BMI. There was no evidence of harmful effects of reducing saturated fat intakes. AUTHORS' CONCLUSIONS: The findings of this updated review suggest that reducing saturated fat intake for at least two years causes a potentially important reduction in combined cardiovascular events. Replacing the energy from saturated fat with polyunsaturated fat or carbohydrate appear to be useful strategies, while effects of replacement with monounsaturated fat are unclear. The reduction in combined cardiovascular events resulting from reducing saturated fat did not alter by study duration, sex or baseline level of cardiovascular risk, but greater reduction in saturated fat caused greater reductions in cardiovascular events
    corecore