49 research outputs found

    Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector

    Get PDF
    A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions

    Measurement of the t¯tZ and t¯tW cross sections in proton-proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of the associated production of a top-quark pair (t¯t) with a vector boson (W, Z) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using 36.1  fb−1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement. The t¯tZ and t¯tW production cross sections are simultaneously measured using a combined fit to all regions. The best-fit values of the production cross sections are σt¯tZ=0.95±0.08stat±0.10syst pb and σt¯tW=0.87±0.13stat±0.14syst pb in agreement with the Standard Model predictions. The measurement of the t¯tZ cross section is used to set constraints on effective field theory operators which modify the t¯tZ vertex

    Search for flavour-changing neutral current top-quark decays t → qZ in proton-proton collisions at \sqrt{s} = 13 TeV with the ATLAS detector

    Get PDF
    A search for flavour-changing neutral-current processes in top-quark decays is presented. Data collected with the ATLAS detector from proton-proton collisions at the Large Hadron Collider at a centre-of-mass energy of s√=13 TeV, corresponding to an integrated luminosity of 36.1 fb−1, are analysed. The search is performed using top-quark pair events, with one top quark decaying through the t → qZ (q = u, c) flavour-changing neutral-current channel, and the other through the dominant Standard Model mode t → bW. Only Z boson decays into charged leptons and leptonic W boson decays are considered as signal. Consequently, the final-state topology is characterized by the presence of three isolated charged leptons (electrons or muons), at least two jets, one of the jets originating from a b-quark, and missing transverse momentum from the undetected neutrino. The data are consistent with Standard Model background contributions, and at 95% confidence level the search sets observed (expected) upper limits of 1.7 × 10−4 (2.4 × 10−4) on the t → uZ branching ratio and 2.4 × 10−4 (3.2 × 10−4) on the t → cZ branching ratio, constituting the most stringent limits to date. Open image in new windo

    Search for excited electrons singly produced in proton–proton collisions at \sqrt{s} = 13 TeV with the ALAS experiment at the LHC

    Get PDF
    A search for excited electrons produced in pp collisions at s√ = 13 TeV via a contact interaction qq¯→ee∗ is presented. The search uses 36.1 fb −1 of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron into an electron and a pair of quarks ( eqq¯ ) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a W boson ( νW ) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying W boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the pp→ee∗→eeqq¯ and pp→ee∗→eνW production cross sections as a function of the excited electron mass me∗ at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter Λ of the model as a function of me∗ . For me∗<0.5 TeV , the lower bound for Λ is 11 TeV . In the special case of me∗=Λ , the values of me∗<4.8 TeV are excluded. The presented limits on Λ are more stringent than those obtained in previous searches

    Measurement of the inclusive isolated-photon cross section at √s = 13 TeV using fb⁻¹ of ATLAS data

    Get PDF
    The differential cross section for isolated-photon production in pp collisions is measured at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC using an integrated luminosity of 36.1 fb−1. The differential cross section is presented as a function of the photon transverse energy in different regions of photon pseudorapidity. The differential cross section as a function of the absolute value of the photon pseudorapidity is also presented in different regions of photon transverse energy. Next-to-leading-order QCD calculations from Jetphox and Sherpa as well as next-to-next-to-leading-order QCD calculations from Nnlojet are compared with the measurement, using several parameterisations of the proton parton distribution functions. The predictions provide a good description of the data within the experimental and theoretical uncertainties

    Observation of electroweak production of two jets and a Z-boson pair

    Get PDF
    Electroweak symmetry breaking explains the origin of the masses of elementary particles through their interactions with the Higgs field. Besides the measurements of the Higgs boson properties, the study of the scattering of massive vector bosons with spin 1 allows the nature of electroweak symmetry breaking to be probed. Among all processes related to vector-boson scattering, the electroweak production of two jets and a Z-boson pair is a rare and important one. Here we report the observation of this process from proton–proton collision data corresponding to an integrated luminosity of 139 fb−1 recorded at a centre-of-mass energy of 13 TeV with the ATLAS detector at the Large Hadron Collider. We consider two different final states originating from the decays of the Z-boson pair: one containing four charged leptons and another containing two charged leptons and two neutrinos. The hypothesis of no electroweak production is rejected with a statistical significance of 5.7σ, and the measured cross-section for electroweak production is consistent with the Standard Model prediction. In addition, we report cross-sections for inclusive production of a Z-boson pair and two jets for the two final states

    Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at √sNN = 5.02 TeV with the ATLAS detector

    Get PDF

    Combination of Searches for Invisible Higgs Boson Decays with the ATLAS Experiment.

    Get PDF
    Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for H→invisible decays where H is produced according to the standard model via vector boson fusion, Z(ℓℓ)H, and W/Z(had)H, all performed with the ATLAS detector using 36.1  fb^{-1} of pp collisions at a center-of-mass energy of sqrt[s]=13  TeV at the LHC. In combination with the results at sqrt[s]=7 and 8 TeV, an exclusion limit on the H→invisible branching ratio of 0.26(0.17_{-0.05}^{+0.07}) at 95% confidence level is observed (expected)

    Probing the Quantum Interference between Singly and Doubly Resonant Top-Quark Production in pp Collisions at sqrt[s]=13  TeV with the ATLAS Detector.

    Get PDF
    This Letter presents a normalized differential cross-section measurement in a fiducial phase-space region where interference effects between top-quark pair production and associated production of a single top quark with a W boson and a b-quark are significant. Events with exactly two leptons (ee, μμ, or eμ) and two b-tagged jets that satisfy a multiparticle invariant mass requirement are selected from 36.1  fb^{-1} of proton-proton collision data taken at sqrt[s]=13  TeV with the ATLAS detector at the LHC in 2015 and 2016. The results are compared with predictions from simulations using various strategies for the interference. The standard prescriptions for interference modeling are significantly different from each other but are within 2σ of the data. State-of-the-art predictions that naturally incorporate interference effects provide the best description of the data in the measured region of phase space most sensitive to these effects. These results provide an important constraint on interference models and will guide future model development and tuning

    Erratum to: Search for diboson resonances in hadronic final states in 139 fb<sup> −1</sup> of pp collisions at s = 13 TeV with the ATLAS detector (Journal of High Energy Physics, (2019), 2019, 9, (91), 10.1007/JHEP09(2019)091)

    Get PDF
    A mistake was identified for the paper [1] in the treatment of the radion [2] cross-sections, which resulted in multiple changes
    corecore