65 research outputs found

    Sensitivity and Estimation of Flying-Wing Aerodynamic, Propulsion, and Inertial Parameters Using Simulation

    Get PDF
    This paper explores the difficulties of aircraft system identification, specifically parameter estimation, for a rudderless aircraft. A white box method is used in conjunction with a nonlinear six degree-of-freedom aerodynamic model for the equations of motion in order to estimate 33 parameters that govern the aerodynamic, inertial, and propulsion forces within the mathematical model. The analysis is conducted in the time-domain of system identification. Additionally, all the parameters are estimated using a single flight rather than a series of shorter flights dedicated to estimating specific sets of parameters as is typically done. A final flight plan is developed with a mixture of lateral maneuvers interspersed throughout the flight to accentuate the significance of the lateral parameters during estimation. Certain parameters were ill-conditioned for parameter estimation using the mathematical model and final flight plan derived in this paper. The gradient-based optimization technique used in the estimation algorithm struggled to accurately estimate all 33 in a single flight due to the abundance of local minima within the solution space. The results of this work may provide a few insights for parameter estimation. First, to understand why system identification is performed the way it is currently done through multiple different flight maneuvers. Second, to gain some visual insight to the behavior of the nonlinear six degree-of-freedom aerodynamic model that describes the motion of fixed wing aircraft. This work may also be helpful in determining which parameters might likely be estimated together and which may struggle due to coupled dynamic relations within the mathematical model

    Orthogonalities and functional equations

    Get PDF
    In this survey we show how various notions of orthogonality appear in the theory of functional equations. After introducing some orthogonality relations, we give examples of functional equations postulated for orthogonal vectors only. We show their solutions as well as some applications. Then we discuss the problem of stability of some of them considering various aspects of the problem. In the sequel, we mention the orthogonality equation and the problem of preserving orthogonality. Last, but not least, in addition to presenting results, we state some open problems concerning these topics. Taking into account the big amount of results concerning functional equations postulated for orthogonal vectors which have appeared in the literature during the last decades, we restrict ourselves to the most classical equations

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    Measurement of the top quark mass in the tt→ dilepton channel from √s = 8 TeV ATLAS data

    Get PDF
    The top quark mass is measured in the tt¯ → dilepton channel (lepton = e,μ) using ATLAS data recorded in the year 2012 at the LHC. The data were taken at a proton proton centre-of-mass energy of √s = 8 TeV and correspond to an integrated luminosity of about 20.2 fb−1. Exploiting the template method, and using the distribution of invariant masses of lepton–b-jet pairs, the top quark mass is measured to be mtop = 172.99±0.41 (stat) ±0.74 (syst) GeV, with a total uncertainty of 0.84 GeV. Finally, a combination with previous ATLAS mtop measurements from √s = 7 TeV data in the tt¯ → dilepton and tt¯ → lepton + jets channels results in mtop = 172.84±0.34 (stat)±0.61 (syst) GeV, with a total uncertainty of 0.70 GeV

    Search for the Standard Model Higgs boson decaying into bb¯ produced in association with top quarks decaying hadronically in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for Higgs boson production in association with a pair of top quarks (tt¯ H) is performed, where the Higgs boson decays to bb¯, and both top quarks decay hadronically. The data used correspond to an integrated luminosity of 20.3 fb−1 of pp collisions at √s = 8 TeV collected with the ATLAS detector at the Large Hadron Collider. The search selects events with at least six energetic jets and uses a boosted decision tree algorithm to discriminate between signal and Standard Model background. The dominant multijet background is estimated using a dedicated data-driven technique. For a Higgs boson mass of 125 GeV, an upper limit of 6.4 (5.4) times the Standard Model cross section is observed (expected) at 95% confidence level. The best-fit value for the signal strength is μ = 1.6 ± 2.6 times the Standard Model expectation for mH = 125 GeV. Combining all tt¯ H searches carried out by ATLAS at √s = 8 and 7 TeV, an observed (expected) upper limit of 3.1 (1.4) times the Standard Model expectation is obtained at 95% confidence level, with a signal strength μ = 1.7 ± 0.8

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb(-1) of proton-proton collision data at root s=13 TeV

    Get PDF
    A search for heavy long-lived charged R-hadrons is reported using a data sample corresponding to 3.2 fb−1 of proton–proton collisions at √s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived R-hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively

    Search for the Higgs boson produced in association with a W boson and decaying to four b-quarks via two spin-zero particles in pp collisions at 13 TeV with the ATLAS detector

    Get PDF
    This paper presents a dedicated search for exotic decays of the Higgs boson to a pair of new spin-zero particles, H → aa, where the particle a decays to b-quarks and has a mass in the range of 20–60 GeV. The search is performed in events where the Higgs boson is produced in association with a W boson, giving rise to a signature of a lepton (electron or muon), missing transverse momentum, and multiple jets from b-quark decays. The analysis is based on the full dataset of pp collisions at √s = 13 TeV recorded in 2015 by the ATLAS detector at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 3.2 fb−1. No significant excess of events above the Standard Model prediction is observed, and a 95% confidence-level upper limit is derived for the product of the production cross section for pp → W H times the branching ratio for the decay H → aa → 4b. The upper limit ranges from 6.2 pb for an a-boson mass ma = 20 GeV to 1.5 pb for ma = 60 GeV

    Chromium(II) tricyanomethide

    No full text
    corecore