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Abstract. In this survey we show how various notions of orthogonality appear in the theory
of functional equations. After introducing some orthogonality relations, we give examples of
functional equations postulated for orthogonal vectors only. We show their solutions as well
as some applications. Then we discuss the problem of stability of some of them considering
various aspects of the problem. In the sequel, we mention the orthogonality equation and the
problem of preserving orthogonality. Last, but not least, in addition to presenting results,
we state some open problems concerning these topics. Taking into account the big amount
of results concerning functional equations postulated for orthogonal vectors which have
appeared in the literature during the last decades, we restrict ourselves to the most classical
equations.
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Introduction

During the last years many papers concerning various aspects of orthogonali-
ties in the field of functional equations and inequalities have appeared. In this
paper we want to give some overview on these results as well as to collect a
number of items from the literature dealing with the subject. It is worth men-
tioning papers by Paganoni and Rätz [139] from 1995, Rätz [156] from 2001
and Chmieliński [42,44] from 2006, 2012, respectively, where the reader can
find some partial collections of the results in this domain.

1. Orthogonalities

1.1. Various definitions of the orthogonality relation

As long as we are working in inner product spaces, usually there is no doubt
what kind of orthogonality relation we have in mind. Namely, it is the one
derived from an inner product and then vectors x and y are orthogonal (x ⊥ y)
if and only if 〈x|y〉 = 0. The situation looks completely different if we consider
normed spaces or more general structures. We start the survey with listing
some orthogonality relations described in normed spaces. More details and
other orthogonality relations can be found in Amir [8], Alonso et al. [2,3],
Alsina et al. [7], Alonso et al. [4], and in the references therein. Later on, we
go on with some definitions in linear spaces, C∗-algebras and groups.

1.1.1. Birkhoff orthogonality. Let (X, ‖ ·‖) be a real normed linear space. For
vectors x and y from X, we say that x is orthogonal to y (x ⊥B y) in the sense
of Birkhoff (x is Birkhoff orthogonal to y) if ‖x + λy‖ ≥ ‖x‖ for all λ ∈ R.

This orthogonality was introduced by Birkhoff [26], however since in normed
linear spaces Birkhoff orthogonality is in fact equivalent to normality as it was
introduced by Carathéodory, some ideas of this kind can already be found
in Blaschke’s book [28]. There are also other names for this orthogonality in
the literature: Birkhoff–James orthogonality, Blaschke–Birkhoff–James orthog-
onality. James [103,104] provided comprehensive studies on this relation. Many
properties of this orthogonality relation are collected in Amir [8] and Alonso
et al. [4].

If X is an inner product space, then ⊥B coincides with the standard orthog-
onality in the inner product space. Moreover, the Birkhoff orthogonality is
homogeneous (i.e., if x ⊥B y, then αx ⊥B βy for all α, β in R).

It is known (see Day [53], James [103]) that, if dim X ≥ 3, then ⊥B is
symmetric (i.e., x ⊥B y if and only if y ⊥B x) if and only if X is an inner
product space. This result fails in two-dimensional spaces (see, e.g., Alonso
et al. [4]).
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1.1.2. Isosceles orthogonality. James (see [102–104]) introduced in a normed
linear space (X, ‖ · ‖) the following orthogonality relation:

x ⊥J y if and only if ‖x + y‖ = ‖x − y‖.

The concept of this definition comes from the Euclidean plane, where a prac-
tical way to examine orthogonality between two vectors x and y is to check
whether the two diagonals of the parallelogram determined by x and y are
of equal length. The relation defined above is called James orthogonality or
isosceles orthogonality.

When the norm ‖ · ‖ is derived from an inner product 〈·|·〉, then James
orthogonality x ⊥J y reduces to the classical condition 〈x|y〉 = 0. Moreover
the James orthogonality ⊥J is symmetric and partially homogeneous (i.e., if
x ⊥J y, then ax ⊥J ay for all a in R). Some other properties are collected in
Amir [8] and Alonso et al. [4] and the references therein.

1.1.3. Pythagorean orthogonality. In a normed linear space (X, ‖ · ‖) we say
that x is Pythagorean orthogonal to y if and only if ‖x − y‖2 = ‖x‖2 + ‖y‖2.
Similarly to the previously defined orthogonalities, this one was also studied
in details by James [102].

At present, a variation of this orthogonality is more often used, namely the
relation defined by

x ⊥P y if and only if ‖x + y‖2 = ‖x‖2 + ‖y‖2

(see, e.g., Partington [141], Szabó [183], Alsina et al. [7]).
This orthogonality is symmetric, partially homogeneous, and in an inner

product space it coincides with the orthogonality defined by means of the inner
product.

Remark 1.1. Notwithstanding the way how the above orthogonalities were
defined originally they may be considered also in complex normed spaces.

1.1.4. Norm derivatives orthogonality. Let (X, ‖ · ‖) be a real normed linear
space of dimension at least two. We consider the functions ρ′

+, ρ′
− : X×X → R

defined as follows

ρ′
±(x, y) := lim

t→0±

‖x + ty‖2 − ‖x‖2

2t
for all x, y ∈ X

and call them norm derivatives. In an inner product space both functions
ρ′
+ and ρ′

− coincide with the inner product. Comprehensive studies of the
properties of these functionals can be found in Alsina et al. [7] and Dragomir
[60] (see also Amir [8]).

Let us now define the ρ-orthogonality relation ⊥ρ by the condition

x ⊥ρ y if and only if ρ′
+(x, y) + ρ′

−(x, y) = 0.

We will consider also ρ+- and ρ−-orthogonality relations defined by

x ⊥ρ+ y if and only if ρ′
+(x, y) = 0
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and

x ⊥ρ− y if and only if ρ′
−(x, y) = 0,

respectively. Among the just defined three orthogonality relations only ⊥ρ is
homogeneous, and none of them is symmetric.

For the further considerations, let us denote ρ′ := 1
2 (ρ′

+ + ρ′
−) (see Miličić

[129], Dragomir [60]).

1.1.5. Roberts orthogonality. It seems that Roberts was the first who intro-
duced the orthogonality relation in normed linear spaces. Namely, he proposed
his definition of orthogonality in 1934 (see [161]). We say that x is orthogonal
to y in the sense of Roberts (x ⊥R y) if and only if ‖x + ty‖ = ‖x − ty‖ for all
t ∈ R.

It is obvious that this orthogonality implies both James and Birkhoff orthog-
onalities. Moreover, Roberts orthogonality is symmetric.

1.1.6. Semi-inner product orthogonality. Let (X, ‖ · ‖) be a normed linear
space. A functional [·|·] : X × X → K ∈ {R,C} satisfying

� [λx + μy|z] = λ[x|z] + μ[y|z] for all x, y, z ∈ X and λ, μ ∈ K;
� [x|λy] = λ[x, y] for all x, y ∈ X and λ ∈ K;
� [x, x] = ‖x‖2 for all x ∈ X;
� |[x, y]| ≤ ‖x‖‖y‖ for all x, y ∈ X

is called a semi-inner product in a normed space X (generating the given
norm). Lumer [124] and Giles [91] proved that in any normed space there
exists a semi-inner product. There can be infinitely many such semi-inner
products. It is known, however, that in a normed space there exists exactly
one semi-inner product if and only if the space is smooth (which means that
the norm in X is smooth, that is, it is Gâteaux differentiable)(see, e.g., Day
[54]).

For a given semi-inner product and vectors x, y ∈ X we define the semi-
inner product orthogonality

x ⊥s y if and only if [y|x] = 0.

1.1.7. Diminnie orthogonality. Let (X, ‖ · ‖) be a real normed linear space,
and let F := {ϕ ∈ X∗ : ‖ϕ‖ ≤ 1}. Define

‖x, y‖ = sup
{∣∣∣∣ϕ(x) ϕ(y)

ψ(x) ψ(y)

∣∣∣∣ : ϕ,ψ ∈ F

}
for all x, y ∈ X.

In 1983, Diminnie [56] proposed the following orthogonality relation

x ⊥D y if and only if ‖x, y‖ = ‖x‖ · ‖y‖.
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He described its connections to Birkhoff orthogonality and proved that if
dim X ≥ 3 then merely the additivity of the relation or the fact that the
inequality ‖x, y‖ ≤ ‖x‖ · ‖y‖ holds true for all x, y ∈ X characterize X as an
inner product space.

1.1.8. Orthogonality space. Apart from the different definitions of orthogo-
nalities in normed spaces we may give some axiomatic definition of such a
relation in linear spaces. The most often cited definition of an orthogonality
space is the one given by Rätz [149]:

Definition 1.1. Let X be a real linear space with dimX ≥ 2 and let ⊥ be a
binary relation on X such that

(01) x ⊥ 0 and 0 ⊥ x for all x ∈ X;
(02) if x, y ∈ X \ {0} and x ⊥ y, then x and y are linearly independent;
(03) if x, y ∈ X and x ⊥ y, then for all α, β ∈ R we have αx ⊥ βy;
(04) for any two-dimensional subspace P of X and for every x ∈ P , λ ∈ [0,∞),

there exists y ∈ P such that x ⊥ y and x + y ⊥ λx − y.

An ordered pair (X,⊥) is called an orthogonality space in the sense of Rätz,
or shortly, orthogonality space.

This definition is more restrictive than the ones given before by Gudder
and Strawther (see [94,95]), however, none of the examples provided by them
is omitted while considering the definition by Rätz. In [94], the authors define
⊥ by (01)–(03) and add

(04′) for every two-dimensional subspace P of X and for every nonzero x ∈ P ,
there exists a nonzero y ∈ P such that x ⊥ y and x + y ⊥ x − y.

In [95], together with (01)–(03) there are

(04′′) if P is a two-dimensional subspace of X, then for every x ∈ P , there
exists a nonzero y ∈ P such that x ⊥ y;

(05) if P is a two-dimensional subspace of X, then there exist nonzero vectors
x, y ∈ P such that x ⊥ y and x + y ⊥ x − y.

An orthogonality space covers the case of an inner product space with the
classical orthogonality as well as an arbitrary real normed linear space with the
Birkhoff orthogonality. But it is also the case with the “trivial” orthogonality
defined on a linear space by (01) and the condition that two nonzero vectors
are orthogonal if and only if they are linearly independent.

However, there are known orthogonality relations on normed linear spaces
which do not satisfy axioms (01)–(04), e.g., the isosceles orthogonality and the
Pythagorean orthogonality.

In the following papers Rätz [150,151] and then Rätz and Szabó [157] devel-
oped the theory by considering various generalizations of the stated definitions
(see also Szabó [179]).
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1.1.9. Orthogonality defined via a difference operator. Given a real functional
ϕ on an Abelian group (X,+) we may define a new orthogonality relation by
the formula

x ⊥ϕ y if and only if �x,yϕ(z) = 0 for all z ∈ X,

where �x denotes the usual difference operator, �xϕ(z) = ϕ(x + z) − ϕ(z),
and �x,y = �x ◦ �y for all x, y ∈ X.

The above orthogonality relation was proposed by Ger in [87]. It generalizes
the trapezoid orthogonality ⊥T on a normed space defined by Alsina et al. in
[5] by

x ⊥T y if and only if ‖z − x‖2 + ‖z − y‖2 = ‖z‖2 + ‖z − (x + y)‖2

for all z ∈ X.

It means that if X is a real normed space and ϕ = ‖ · ‖2, ϕ-orthogonality
coincides with the T-orthogonality.

Ger [87] studies the properties of the relation ⊥ϕ and obtains some new
characterizations of inner product spaces, e.g., if X is a linear topological space
and ϕ is a continuous functional, (X,⊥ϕ) is an orthogonality space if and only
if X is an inner product space (i.e., there exists an inner product 〈·|·〉 : X2 → R

such that ‖x‖ =
√〈x|x〉 for all x ∈ X).

1.1.10. C∗-algebras. Suppose A is a C∗-algebra. Let X be an algebraic right
A-module which is a complex linear space with a compatible scalar multipli-
cation, i.e., (λx)a = x(λa) = λ(xa) for all x ∈ X, a ∈ A, λ ∈ C.

Then X is called a (right) inner product A-module if there exists an A-
valued inner product, i.e., a mapping 〈·|·〉 : X × X → A satisfying

� 〈x|x〉 ≥ 0 (positive element of A) and 〈x|x〉 = 0 if and only if x = 0;
� 〈x|λy + z〉 = λ〈x|y〉 + 〈x|z〉;
� 〈x|ya〉 = 〈x|y〉a;
� 〈y|x〉 = 〈x|y〉∗,

for all x, y, z ∈ X, a ∈ A, λ ∈ C (cf., e.g., Lance [121]).
The orthogonality relation in X is naturally defined by

x ⊥ y if and only if 〈x|y〉 = 0.

1.1.11. Orthogonalities on groups. In 1998, Baron and Volkmann [24] pro-
posed the following axioms of orthogonality. Let (X,+) be a uniquely 2-
divisible Abelian group. Further, let ⊥ be a binary relation defined on X
with the properties:

(a) 0 ⊥ 0;
(b) if x, y ∈ X and x ⊥ y, then −x ⊥ −y and x

2 ⊥ y
2 ;
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(c) every odd orthogonally additive mapping having values in an Abelian
group is additive and every even orthogonally additive mapping is qua-
dratic (see Sect. 2.1.1).

In 2010, Fechner and Sikorska [69] were dealing with the stability of orthog-
onal additivity (see Sect. 3.1.1) proposing the following definition of orthogo-
nality: Let (X,+) be an Abelian group and let ⊥ be a binary relation defined
on X with the properties:
(α) if x, y ∈ X and x ⊥ y, then x ⊥ −y, −x ⊥ y and 2x ⊥ 2y;
(β) for every x ∈ X, there exists y ∈ X such that x ⊥ y and x + y ⊥ x − y.

Each orthogonality space satisfies these conditions as well as an arbitrary
normed linear space with the isosceles orthogonality, but it is no longer the
case with the Pythagorean orthogonality.

In what follows, we provide an example of a binary relation which seems
to be far from any known orthogonality relations but satisfies (α) and (β).

Example 1.1. (Fechner and Sikorska [69]) Take X = R and define ⊥⊂ R
2 in

the following way:

x ⊥ y if and only if x · y ∈ R \ Q or x · y = 0.

Considering usually at least two-dimensional spaces while dealing with
orthogonalities allows us to avoid trivial situations, i.e., situations when x ⊥ y
implies that x = 0 or y = 0. In the above example it is not the case. However,
of course this example can be extended to higher dimensional inner product
spaces, where the set of “orthogonal” vectors is considerably bigger than in
the standard case.

1.2. Approximate orthogonalities

Let ε ∈ [0, 1). A natural way to define approximate orthogonality (or ε-
orthogonality) of vectors x and y in an inner product space is:

x ⊥ε y if and only if |〈x|y〉| ≤ ε‖x‖‖y‖.

Quite similarly, in normed spaces we define the approximate semi orthog-
onality relation (ε-semi-inner product orthogonality) and approximate
ρ-orthogonality (ε-ρ-orthogonality) as follows

x ⊥ε
s y if and only if |[y|x]| ≤ ε‖x‖‖y‖

and
x ⊥ε

ρ y if and only if |ρ′(x, y)| ≤ ε‖x‖‖y‖, (1.1)

respectively (see Dragomir [59], and also Chmieliński [43], Chmieliński and
Wójcik [49]). Analogous definitions to (1.1) are obtained with ρ replaced by
ρ+ or ρ−.



Vol. 89 (2015) Orthogonalities and functional equations 223

There are two notions of approximate Birkhoff orthogonality (motivations
for using such relations are described in Moǰskerc and Turnšek [134]). The first
one comes from Dragomir [58,59]:

x ε⊥B y if and only if ‖x + λy‖ ≥ (1 − ε)‖x‖ for all λ ∈ K.

For inner product spaces we have (Dragomir [59]; see also Chmieliński [44])

x ε⊥B y if and only if x ⊥δ y, where δ =
√

(2 − ε)ε.

Another definition of approximate Birkhoff orthogonality (generally not equiv-
alent to the just mentioned one) comes from Chmieliński [40]:

x ⊥ε
B y if and only if ‖x + λy‖2 ≥ ‖x‖2 − 2ε‖x‖‖λy‖ for all λ ∈ K.

Moǰskerc and Turnšek [134] showed that for any x, y from a normed space (real
or complex) the relation x ⊥ε

B y implies x δ⊥B y, where δ = 1 − √
1 − 4ε, and

the converse holds (with some ε depending on δ), e.g., in uniformly smooth
spaces.

Moreover, we have the following properties.

Theorem 1.1. (Chmieliński and Wójcik [49,50]) For an arbitrary real normed
linear space X and ε ∈ [0, 1) we have

⊥ε
ρ+

⊂⊥ε
B , ⊥ε

ρ−⊂⊥ε
B, ⊥ε

ρ⊂⊥ε
B, ⊥ε

s⊂⊥ε
B

(with the standard notation, that is, e.g., ⊥ε
B denotes the set {(x, y) ∈ X2 :

x ⊥ε
B y}). Moreover, if the norm is smooth, then ⊥ε

ρ=⊥ε
B=⊥ε

s.

Theorem 1.2. (Chmieliński and Wójcik [50]) Let (X, ‖ · ‖) be an arbitrary real
normed linear space and let ε ∈ [0, 1). Then for arbitrary x, y ∈ X and α ∈ R

we have

x ⊥ε
B (y − αx) ⇔ ρ′

−(x, y) − ε‖x‖ ‖y − αx‖
≤ α‖x‖2 ≤ ρ′

+(x, y) + ε‖x‖ ‖y − αx‖.

As a special case of the latter result we obtain the property:

x ⊥ε
B y ⇔ ρ′

−(x, y) − ε‖x‖ ‖y‖ ≤ 0 ≤ ρ′
+(x, y) + ε‖x‖ ‖y‖.

So, we have generalizations of the known conditions:

x ⊥B (y − αx) ⇔ ρ′
−(x, y) ≤ α‖x‖2 ≤ ρ′

+(x, y)

and

x ⊥B y ⇔ ρ′
−(x, y) ≤ 0 ≤ ρ′

+(x, y)

(see, e.g., Amir [8]).
Two notions of approximate James orthogonality are given by the following

conditions (see Chmieliński and Wójcik [48]):
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x ⊥ε
J y if and only if

∣∣‖x + y‖2 − ‖x − y‖2
∣∣ ≤ 4ε‖x‖‖y‖,

and

x ε⊥J y if and only if
∣∣‖x + y‖ − ‖x − y‖∣∣ ≤ ε(‖x + y‖ + ‖x − y‖),

or equivalently,

x ε⊥J y if and only if
1 − ε

1 + ε
‖x − y‖ ≤ ‖x + y‖ ≤ 1 + ε

1 − ε
‖x − y‖.

Obviously, for ε = 0 both versions of the approximate J-orthogonality coincide
with the J-orthogonality. As observed by Chmieliński and Wójcik in [48], the
second definition of approximate J-orthogonality is weaker than the first one,
i.e., for an arbitrary ε ∈ [0, 1) the condition x ⊥ε

J y implies x ε⊥J y, but not
conversely.

One can check that in the case when the norm comes from a real valued
inner product, then

x ⊥ε
J y ⇔ |〈x|y〉| ≤ ε‖x‖ ‖y‖ ⇔ x ⊥ε y

and

x ε⊥J y ⇔ |〈x|y〉| ≤ ε

1 + ε2

(‖x‖2 + ‖y‖2
)
.

So, the first (stronger) approximate J-orthogonality coincides with the stan-
dard notion of approximate orthogonality in inner product spaces.

Example 1.2. Let (X, 〈·|·〉) be an inner product space, x ∈ X \{0} and y = λx

for some λ > 0. Then |〈x|y〉|
‖x‖2+‖y‖2 = λ

1+λ2 → 0 as λ → ∞, and |〈x|y〉|
‖x‖ ‖y‖ = 1 for

all λ. Thus for arbitrary x �= 0 and ε ∈ [0, 1) there exists λ such that x ε⊥J λx
whereas x ⊥ε

J λx does not hold for any ε ∈ [0, 1).

It is known that the conditions ⊥B⊂⊥J or ⊥J⊂⊥B characterize (X, ‖ · ‖)
as an inner product space, so it is quite natural to ask about the connec-
tions between approximate James orthogonalities and approximate Birkhoff
orthogonalities.

Finally, similarly to Chmieliński and Wójcik [48], two notions of approxi-
mate Roberts orthogonality are given by Zamani and Moslehian [201]:

x ⊥ε
R y if and only if

∣∣‖x + ty‖2 − ‖x − ty‖2
∣∣ ≤ 4ε‖x‖‖ty‖ for all t ∈ R,

and

x ε⊥R y if and only if
∣∣‖x + ty‖ − ‖x − ty‖∣∣ ≤ ε(‖x + ty‖ + ‖x − ty‖)

for all t ∈ R.
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2. Functional equations postulated for orthogonal vectors

2.1. Cauchy functional equation

2.1.1. Solutions. We start this section with giving some historical background
for the investigations in this field (see also Paganoni and Rätz [139], Rätz
[156]).

In what follows we will consider the Cauchy functional equation postulated
for orthogonal vectors only, that is the conditional equation

f(x + y) = f(x) + f(y) for all x, y with x ⊥ y (2.1)

(the domain, target space and the orthogonality relation will be specified later).
Functions satisfying (2.1) are called orthogonally additive.

The studies on (2.1) were begun (to the best of our knowledge) by Pinsker in
1938 who was considering (see [143]) orthogonally additive mappings defined
on the space of continuous functionals from L2[a, b] with an orthogonality
defined by

x ⊥ y if and only if

b∫
a

x(t)y(t)dt = 0

(so by means of the inner product). Later on, the studies proceeded in two
directions concerning the domain. It was considered: (i) a set of continuous
functions on some type of topological space or (ii) a set of measurable functions
on a measure space. Then we say that x, y are orthogonal in the lattice theoretic
sense (x ⊥L y) if the set {t : x(t)y(t) = 0} is empty in case (i) or of measure
zero in case (ii). A real valued functional f is L-additive if f(x+y) = f(x)+f(y)
whenever x ⊥L y. If f is L-additive and satisfies certain continuity or bound-
edness conditions, then f admits an integral representation giving a nonlinear
generalization of the Riesz theorem. Such representations have been obtained
for case (i) in [36,79] and for case (ii) in [61,78,126,131,132,174].

The above mentioned concepts of orthogonality are quite natural in the
spaces considered and they are important for certain applications [81,123,
159], however, there are several other concepts of orthogonality defined and
developed by Birkhoff, Roberts, James and Day (see Sect. 1).

We restrict our attention to the approach (being in fact the continuation
of Pinsker’s [143]) which was begun in 1972 by Sundaresan [175]. He studied
orthogonally additive functions defined on an inner product space or on a
normed linear space with Birkhoff orthogonality, and he gave some partial
results in the case of continuous orthogonally additive functions. His main
result reads as follows.

Theorem 2.1. (Sundaresan [175]) Let f be a continuous function from a Banach
space (X, ‖ · ‖) into a locally convex space Y . If X is a Hilbert space, then f is
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orthogonally additive if and only if there exist a vector c ∈ Y and a continuous
linear operator h : X → Y such that

f(x) = ‖x‖2 · c + h(x) for all x ∈ X. (2.2)

Moreover, if X is not isometric with a Hilbert space (that is, there is no bilinear
symmetric inner product in it from which the given norm can be derived in the
customary way), then f is a continuous linear operator on X into Y .

Studies were continued by Gudder and Strawther [94–96] and Dhombres
[55]. The manuscript [94] from 1974 contains a collection of properties and
results without proofs, but we can find there the first axiomatization of the
orthogonality relation containing the former situations as special cases. In the
next paper [95], bringing a slightly different axiomatic definition, the authors
already gave some explanations and showed the form of real solutions of (2.1)
under some boundedness conditions. For the main results the assumption
about the completeness of the domain turned out to be superfluous.

Theorem 2.2. (Gudder and Strawther [95]) (Characterization of inner prod-
uct spaces (i.p.s.)) Let (X,⊥) be an orthogonality space (defined by (01)–(03)
and (04’)). If there exists f : X → R which is even, orthogonally additive,
hemicontinuous1 and not identically zero, then there is an inner product 〈·|·〉
on X such that for any x, y ∈ X, x ⊥ y if and only if 〈x|y〉 = 0. In fact,
〈x|y〉 = 1

4 [f(x + y) − f(x − y)] and the induced norm satisfies ‖x‖2 = f(x) for
all x, y ∈ X or ‖x‖2 = −f(x) for all x ∈ X.

As a corollary, Gudder and Strawther [95] obtained an analogous form of
solutions as in Theorem 2.1 for real functions defined on a normed space with
the Birkhoff orthogonality under the assumption of hemicontinuity. Moreover,
they proved a generalization of the Riesz representation theorem, showing that
if X is an inner product space and f : X → R is orthogonally additive and
satisfies |f(x)| ≤ M‖x‖ for all x ∈ X, then f is a continuous linear functional
and hence, if X is a Hilbert space, then f(x) = 〈x|z〉 for some z ∈ X.

In his book [55], Dhombres states the open problem whether the regularity
assumption of a considered function may be omitted in order to derive that in
a normed space of dimension not less than 2 the existence of an even nonzero
orthogonally additive mapping characterizes inner product spaces.

So, the next step was to get rid of the regularity conditions and to character-
ize in an abstract framework—the general even and the general odd solution of
(2.1) with values in an Abelian group (Lawrence [122], Rätz [149–151], Szabó
[176], Rätz and Szabó [157]). Roughly speaking, in many important situations,
the general even solution is quadratic, and the general odd solution is additive.

1A function f : X → R is called hemicontinuous at x0 ∈ X if and only if the function
R � α �→ f(αx0) is continuous, and it is called hemicontinuous if it is hemicontinuous at
every x ∈ X.
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Theorem 2.3. (Rätz [149]) Let (X,⊥) be an orthogonality space and (Y,+) be
a uniquely 2-divisible Abelian group. If f : X → Y is a solution of (2.1), then
it has the form f = a + q, where a is additive and q is quadratic.

Theorem 2.4. (Rätz [147–149]) Let (X, ‖ · ‖) be an inner product space and
(Y,+) be a uniquely 2-divisible Abelian group. Then f : X → Y is a solution
of (2.1) if and only if there exist additive mappings a : X → Y and b : R → Y
such that

f(x) = a(x) + b(‖x‖2) for all x ∈ X. (2.3)

The above result in the case of a uniquely 2-divisible Abelian group (Y,+)
was found independently by Ger and Szabó (see [84]). Under the assumption
that (Y,+) is 2-torsion-free it was proved by Rätz and Szabó in [157].

Baron and Rätz in [23] (for inner product spaces) and then Baron and
Volkmann in [24] showed that the assumption that Y is uniquely 2-divisible as
well as the 2-torsion-freeness of Y may be omitted. We present here a theorem
from [24].

Theorem 2.5. (Baron and Volkmann [24]) Let X be a linear space over a field
of characteristic different from 2 (or let X be a uniquely 2-divisible group),
(Y,+) be an Abelian group and let f : X → Y . Assume that ⊥ is a binary
relation on X such that

(i) 0 ⊥ 0 and x, y ∈ X, x ⊥ y, implies −x ⊥ −y and x
2 ⊥ y

2 ;
(ii) every odd orthogonally additive mapping from X to Y is additive and

every even orthogonally additive mapping is quadratic.

Then f is orthogonally additive if and only if

f(x) = a(x) + b(x, x) for all x ∈ X,

with a : X → Y being additive and b : X × X → Y being biadditive, symmetric
and such that b(x, y) = 0 whenever x ⊥ y.

Moreover, in this case the functions a, b and q(x) = b(x, x), x ∈ X, are
uniquely determined; they are given by

a(x) = f
(x

2

)
− f

(
−x

2

)
for all x ∈ X,

b(x, y) = 2
[
f

(
x + y

4

)
+ f

(−x − y

4

)
− f

(
x − y

4

)
− f

(−x + y

4

)]

for all x, y ∈ X,

q(x) = 2
[
f
(x

2

)
+ f

(
−x

2

)]
for all x ∈ X,

respectively.

If X is an inner product space then various assumptions force orthogonally
additive functions f to be of the form (2.2), namely:
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– Y is a separated topological R-vector space and f is continuous (Rätz
[149, Corollary 11]; cf. Theorem 2.1 and Sundaresan [175]);

– f : X → R satisfies |f(x)| ≤ m‖x‖ for all x ∈ X and a fixed m ≥ 0
(Gudder and Strawther [95, Corollary 2.4], Rätz [149, Corollary 12]);

– f : X → R satisfies f(x) ≥ 0 for all x ∈ X; then we obtain (2.2) with
h = 0 and with nonnegative c (see Gudder and Strawther [96]; Rätz [149,
Corollary 13]);

– f : X → R is bounded on a second category Baire subset of X (follows
from Rätz [149], Ger [82]; see also Ger and Sikorska [89]);

– Y is a topological Abelian group and f : X → Y is continuous at a point
(Baron and Kucia [21, Theorem 4.3]).

The last result was generalized first by Brzdęk [32] (with the domain being
an orthogonality space and with the assumption of continuity at the origin)
and then by Wyrobek [198] who was working in an Abelian topological group
in the domain with the assumption of continuity at an arbitrary point.

It is possible to characterize Hilbert spaces among real inner product spaces
in terms of the boundedness behavior of R-valued orthogonally additive map-
pings. The result is related to the Riesz representation theorem.

Theorem 2.6. (Rätz [149]) (Characterization of Hilbert spaces) For an inner
product space X the following conditions are equivalent:

(i) for every orthogonally additive mapping f : X → R which is bounded
from below, there exists an element x0 ∈ X such that f(x0) ≤ f(x) for
all x ∈ X;

(ii) X is a Hilbert space.

For several years mathematicians were trying to find the connection between
the property (e)Hom⊥(X,Y ) = {0} (where (e)Hom⊥(X,Y ) stands for the set
of all even orthogonally additive functions from X to Y ) and the property that
X is an inner product space.

Theorem 2.7. (Rätz [149], Szabó [176]) (Characterization of i.p.s.) Let (X, ‖·‖)
be a real normed space, dim X ≥ 2, with Birkhoff orthogonality ⊥B and (Y,+)
be an Abelian group. (X, ‖·‖) is an inner product space if and only if not every
⊥B-additive mapping f : X → Y is additive.

In [149], the above theorem is proved for at least three-dimensional spaces.
Moreover, in [176], it is additionally proved that if Y is an arbitrary group
(so not necessarily Abelian), then every even orthogonally additive mapping
is identically zero.

The following fact concerns the symmetry of relation ⊥. It is known that in
at least three dimensional normed spaces X, the symmetry of ⊥B characterizes
X as an inner product space. Lawrence [122] proved that if dimX = 2 and
⊥B is not symmetric, then every orthogonally additive mapping is additive.
In fact, we can prove this result in an arbitrary orthogonality space.
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Theorem 2.8. (Rätz [150]) For any orthogonality space (X,⊥) and any Abelian
group (Y,+), if (e)Hom⊥(X,Y ) �= {0}, then ⊥ is symmetric.

In 1990, Szabó proved the following (see [177]).

Theorem 2.9. Let (X,⊥) be an orthogonality space and let (Y,+) be an Abelian
group. If dim X ≥ 3 and there is a nontrivial even orthogonally additive
mapping f : X → Y , then X is an inner product space.

In [179], Szabó went on trying to answer the question about dimension 2. By
strengthening the fourth assumption in the definition of orthogonality space
he proved that the above result is also true when dimX = 2. In 2001, Rätz
[156] came back to the problem and asked whether it is also true in arbitrary
orthogonality spaces X with dim X = 2.

An affirmative answer was given by Yang in 2006. She showed (see [200])

Theorem 2.10. (Characterization of i.p.s.) Suppose (X,⊥) is an orthogonality
space and there exists a nontrivial even orthogonally additive function f : X →
Y for some Abelian group (Y,+). Then X is an inner product space.

Interesting results were obtained lately by Baron [16–18]. He was working
with orthogonally additive involutions, functions with orthogonally additive
second iterate, finally with orthogonally additive bijections in real inner prod-
uct spaces.

Theorem 2.11. Any orthogonally additive bijection from a real inner product
space into an Abelian group is additive.

In [190], Turnšek extended this result to complex or quaternionic inner
product spaces.

The following examples show that none of the assumptions: injectivity or
surjectivity, may be omitted (see Baron [16]).

Example 2.1. Assume that X is a real inner product space. Let H0 be a basis
of R over Q and let H be a basis of X over Q. If H1 and H2 are disjoint subsets
of H such that

1 ≤ card H1 ≤ c and cardH2 = cardH,

and a : R → X and b : X → X are additive functions such that a(H0) = H1,
b(H) = H2 and b is injective, then f : X → X given by (2.3) is orthogonally
additive, injective and it is not additive.

Example 2.2. Assume X = X1 ⊕ X2, X1 ⊥ X2 and dim X1 = 1. Fix e ∈ X1

with ‖e‖ = 1, let a0 : R → R and b0 : X2 → X2 be additive functions such that
a0([0,∞)) = R, b0(X2) = X2 and define a : R → X and b : X → X by

a(α) = a0(α)e, b(αe + x2) = b0(x2) for all α ∈ R and x2 ∈ X2.

Then the function f : X → X given by (2.3) is orthogonally additive, f(X) =
X and f is not additive.
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Theorem 2.12. (Baron [17]) Suppose (X, 〈·|·〉) is a real inner product space.
Assume f : X → X and f2 are orthogonally additive. If f is surjective, then
it is additive.

It is easy to observe that neither the orthogonal additivity of f implies the
orthogonal additivity of f2, nor the converse.

So far we have been considering orthogonalities which were homogenous.
One can ask what is the form of orthogonally additive mappings defined on
a normed space with isosceles orthogonality, Pythagorean orthogonality and
norm derivative orthogonality.

Some partial answers were given by Szabó [180,181].

Theorem 2.13. Suppose that (X, ‖ · ‖) is a real normed linear space with
dim X ≥ 3 and (Y,+) is an Abelian group. If a mapping f : X → Y is odd and
satisfies (2.1) with isosceles orthogonality, then it is additive.

Theorem 2.14. (Characterization of i.p.s.) There exists a nontrivial, even,
isosceles orthogonally additive mapping from a normed space (X, ‖·‖), dim X ≥
2, to an Abelian group (Y,+) if and only if X is an inner product space.

Problem 2.1. What is the form of odd isosceles orthogonally additive mappings
for a space X with dim X = 2?

It seems that the Pythagorean orthogonality is the most difficult one for
this kind of investigations.

Theorem 2.15. (Szabó [183]) Suppose that (X, ‖ · ‖) is a real normed linear
space with dim X ≥ 3 and (Y,+) is an Abelian group. If f : X → Y is an odd
mapping satisfying (2.1) with Pythagorean orthogonality, then it is additive.

Problem 2.2. (a) Determine even Pythagorean orthogonally additive map-
pings. (b) Determine odd Pythagorean orthogonally additive mappings in the
case dim X = 2.

Of course in a normed space with Pythagorean orthogonality we cannot
expect a similar result to Theorem 2.14 since in all such spaces, for arbitrarily
fixed z0 ∈ X \ {0} the function f(x) := ‖x‖2z0, x ∈ X, is nonzero, even and
orthogonally additive.

Looking for the form of solutions of the conditional equation

f(x + y) = f(x) + f(y) for all x, y ∈ X with x ⊥ρ y (2.4)

we proved (see Alsina et al. [6,7]) that a real normed space X with dimension
at least 2 with ρ-orthogonality is in fact an orthogonality space in the sense
of Rätz [149], and so, we know the form of solutions. As a by-product we
obtained an alternative proof for the fact that a real norm space with Birkhoff
orthogonality is an example of an orthogonality space (cf. Szabó [177,179]).

In [153], Rätz showed still another analogous characterization of inner prod-
uct spaces:
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Theorem 2.16. (Characterization of i.p.s.) Let (X, ‖·‖) be a real normed linear
space, dim X ≥ 2, and let ⊥D stand for the Diminnie orthogonality on X. Then
(X, ‖ · ‖) is an inner product space if and only if not every solution f : X → R

of the functional equation

f(x + y) = f(x) + f(y) for all x, y ∈ X with x ⊥D y

is additive.

Instead of considering orthogonally additive mappings defined on the whole
space we may study such conditional forms on a more restricted domain, for
example on balls (see, e.g., Sikorska [166,167]).

Another direction of studies is to generalize the classical James orthogo-
nality by defining the orthogonality relation as follows: x ⊥ y if and only if
ϕ(x+ y) = ϕ(x− y), where ϕ is a given function with some properties (cf. Ger
and Sikorska [90, Theorem 5], and Sikorska [169]). Of course, in case ϕ = ‖ · ‖,
we have the isosceles orthogonality.

Let now A be a C∗-algebra and let (X, 〈·|·〉) be a Hilbert C∗-module over
A.

Obviously, if a is an additive mapping on X and b is an additive mapping
on A, then the mapping f defined by

f(x) = a(x) + b(〈x|x〉) for all x ∈ X,

is orthogonally additive.
During the 15th ICFEI (May 2013, Ustroń, Poland), Ilǐsević presented

results obtained jointly with Turnšek and Yang giving the conditions when
the converse is true.

It is worth mentioning that the form a+q of orthogonally additive functions,
where a is additive and q is quadratic, is not always achieved.

Rätz [152] studied orthogonally additive mappings on free Z-modules. In
the case dimZ X = 2, he showed a deviation from the described situation, e.g.,
in the inner product space case (see also Rätz [156], Kuczma [120]).

At the end of this section we want to point out that also an additive set-
function f : M → R defined on an algebra M, i.e., the function which satisfies
a conditional equation

f(A ∪ B) = f(A) + f(B) for all A,B ∈ M with A ∩ B = ∅ (2.5)

is in fact an example of an orthogonally additive mapping.

2.1.2. Applications. We have already mentioned some applications of
orthogonal additivity in mathematics. Namely, with its help we can give sev-
eral characterizations of inner product spaces among normed spaces as well as
of Hilbert spaces among Banach spaces.

The equation of orthogonal additivity can also give rise to some other math-
ematical problems (see, e.g., Maksa et al. [125] or Matkowski [128]). For other
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fields of mathematics where some kind of orthogonal additivity appears see
Rätz [156].

There are quite interesting interactions of orthogonal additivity outside
mathematics.

Equation (2.1) has its applications in physics, in the theory of ideal gas
(see Aczél and Dhombres [1], Truesdell and Muncaster [188], Arkeryd and
Cercignani [10]). In the three-dimensional Euclidean space, by means of (2.1)
we obtain the formula for the distribution law of velocities in an ideal gas at a
fixed temperature. Since for physical reasons, it is generally assumed that the
distribution function is continuous, positive and even, the so called Maxwell–
Boltzmann distribution law has the form

H(v) = A exp(−a‖v‖2),

where a,A are some positive constants, and the formula a = m
2kT connects a

with the mass of a molecule m, absolute temperature T and the Boltzmann
constant k (cf. also the Boltzmann–Gronwall Theorem on summational invari-
ants; [188]). In 1860, Maxwell obtained the above mentioned formula using
another approach but also solving a functional equation, however, he made
stronger assumptions (see [188]).

Equation (2.1) has got its applications also in actuarial mathematics in a
premium calculation principle. It is shown (see Heijnen and Goovaerts [97]),
that the variance principle is the only covariance-additive premium principle,
i.e., satisfies the condition

π(x + y) = π(x) + π(y) for all risks x, y with cov (x, y) = 0.

2.2. Jensen functional equation

It is easy to see that a function which satisfies the orthogonal form of the
Jensen functional equation

f

(
x + y

2

)
=

f(x) + f(y)
2

for all x, y ∈ X with x ⊥ y (2.6)

between an orthogonality space X and an Abelian group divisible by 2 is of
the form f(x) = h(x) + c, where h is orthogonally additive and c is a real
constant.

However, if one knows that h is of the form a+q, where a is additive and q is
quadratic, the immediate consequence is that the solutions of this conditional
Jensen equation are unconditionally Jensen ones (see Ger [86]).

This nice fact we obtain thanks to the equality f(x
2 ) = f(x)

2 valid for all
x ∈ X, which is in the sequel, a consequence of the relation x ⊥ 0 for all
x ∈ X. This fact implies that while studying this conditional equation we are
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closer to investigations used for studies of unconditional forms rather than
their conditional analogues.

A modified version of the Jensen equality was presented by Szostok [185].
A starting point for his considerations was the inequality

f

(
x + y

2

)
≤ γ [f(x) + f(y)]

postulated for some constant γ ∈ (0, 1
2

)
(see Kolwicz and P�luciennik [118]),

having its background in Orlicz spaces. Namely, Szostok was studying the
equality

f

(
x + y

2

)
= γ

(‖x − y‖
‖x + y‖

)
[f(x) + f(y)] for all x, y with x �= −y,

where f maps a real normed linear space into the space of reals, which led in the
sequel to an orthogonal Jensen equation (2.6) with the isosceles orthogonality.

These investigations gave rise to the studies of a generalized Cauchy equa-
tion (see Szostok [186,187]).

2.3. Quadratic functional equation

The studies of orthogonally quadratic functional equations, that is, conditional
equations of the form

f(x + y) + f(x − y) = 2f(x) + 2f(y) for all x, y ∈ X with x ⊥ y,

started in 1966 with the paper by Vajzović [193], who described the form of
continuous orthogonally quadratic functionals on a Hilbert space of dimension
at least 3. More exactly, he proved that if f : X → K, where (X, 〈·|·〉) is a real
or complex Hilbert space, dim X ≥ 3, and K ∈ {R,C}, satisfies the condition

f(x + y) + f(x − y) = 2f(x) + 2f(y) for all x, y ∈ X with 〈x|y〉 = 0, (2.7)

then there exist a continuous linear operator B and continuous quasi-linear
operators C and D (C is quasi-linear if C(x + y) = C(x) + C(y) and C(λx) =
λC(x) for all x, y ∈ X and λ ∈ C) such that

f(x) = 〈Bx|x〉 + 〈Cx|x〉 + 〈x|Dx〉 for all x ∈ X. (2.8)

His result was generalized in 1986 by Drljević to A-orthogonality on a real
(or complex) Hilbert space (see [63]). Namely, Drljević was considering (2.7)
with 〈x|y〉 = 0 replaced by 〈x|Ay〉 = 0 (we say that x is A-orthogonal to y),
where A : X → X is a continuous selfadjoint operator with dimA(X) > 3.
Looking for the general continuous solution, he obtained the same form of f
as in (2.8).
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In the same year Fochi [70] showed that in inner product spaces of dimen-
sion not less than 3, each real valued orthogonally quadratic mapping is uncon-
ditionally quadratic. In fact, this result remains true for values in a uniquely
2-divisible Abelian group.

In [71], Fochi proved even more, namely, she showed that both for real and
complex valued functions, if dimA(X) > 2, then the solutions of the condi-
tional A-orthogonal quadratic equation have to be quadratic (unconditionally).

Szabó [178] generalized the above mentioned results to a symmetric orthog-
onality introduced by a sesquilinear form on a linear space and for arbitrary
mappings with values in an Abelian group. Before stating the main result given
by Szabó, we introduce some notation.

Let Φ be a field such that char Φ �∈ {2, 3, 5}, let X be a vector space
over Φ with dimΦ X ≥ 3 and let (Y,+) be a 6-torsion-free Abelian group,
i.e., multiplication by 6 in Y is injective. Furthermore, let ϕ : X2 → Φ be a
sesquilinear functional with respect to an automorphism ξ : Φ → Φ, i.e., ϕ is
biadditive and ϕ(αx, βy) = αξ(β)ϕ(x, y) for all x, y ∈ X and α, β ∈ Φ. Then
define the ϕ-orthogonality relation ⊥ϕ on X by

x ⊥ϕ y if and only if ϕ(x, y) = 0.

A vector z ∈ X is said to be isotropic if ϕ(z, z) = 0. For x ∈ X define a linear
functional ϕx : X → Φ by ϕx(t) = ϕ(t, x). Let us denote X∗

ϕ = {ϕx : x ∈ X}
which is a linear subspace of the algebraic conjugate space X∗ of X.

Theorem 2.17. Suppose that the ϕ-orthogonality on X is symmetric, dim X∗
ϕ ≥

3, and there exists a non-isotropic vector in X. If Y is 6-torsion-free, then
every ϕ-orthogonally quadratic mapping from X to Y is quadratic.

The problem of determining all solutions of the orthogonally quadratic
functional equation on an arbitrary orthogonality space, or in a normed space
with, e.g., Birkhoff, isosceles or Pythagorean orthogonalities remains open.

Some partial results were presented by Szabó during his lectures at the 5th
International Conference on Functional Equations and Inequalities and on the
33rd International Symposium on Functional Equations in 1995 (see [184] and
[182], respectively). However, we do not know his proofs, since the results were
not published. We cite here the main theorems presented then.

Theorem 2.18. (Szabó, 5 ICFEI, 1995) Assume that (X, ‖ · ‖) is a real normed
space equipped with the Birkhoff orthogonality and (Y,+) is an Abelian group.
If dim X ≥ 5 and the norm is Gateaux differentiable, then 2f is unconditionally
quadratic whenever f : X → Y is a Birkhoff orthogonally quadratic mapping.

Theorem 2.19. (Szabó, 33 ISFE, 1995) If (X, ‖ · ‖) is a strictly convex real
normed space such that dim X ≥ 4 and (Y,+) is an Abelian group, then for
any isosceles orthogonally quadratic mapping f : X → Y , 2f is unconditionally
quadratic.
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So, let us collect now the still open problems.

Problem 2.3. Prove the theorems by Szabó. Are all assumptions necessary?

Problem 2.4. Determine the solutions of the orthogonally quadratic equation
in an orthogonality space.

Problem 2.5. Determine the solutions of the orthogonally quadratic equation
in a normed space with Pythagorean orthogonality.

In [76], Fochi was looking for the solutions of some pexiderized forms of an
orthogonally quadratic equation, namely

f(x + y) + f(x − y) = 2g(x) + 2h(y) for all x, y ∈ X with x ⊥ y (2.9)

and

f(x + y) + g(x − y) = h(x) + k(y) for all x, y ∈ X with x ⊥ y. (2.10)

In an orthogonality space X in the sense of Rätz (see Sect. 1.1.8) with a
symmetric relation of orthogonality ⊥ she proved the following

Theorem 2.20. The general solution f, g, h : X → R of the functional equation
(2.9) is given by ⎧⎪⎨

⎪⎩
f(x) = A(x) + Q(x) + f(0)
g(x) = A(x) + Q(x) + g(0)
h(x) = Q(x) + h(0),

for all x ∈ X, where A : X → R is an additive function and Q : X → R is
orthogonally quadratic.

The final problem, however, stays unsolved. We do not know the general
form of an orthogonally quadratic function.

For the next result assume that (X, 〈·|·〉) is an inner product space, dimX >
2.

Theorem 2.21. (Fochi [76]) Let f, g, h, k : X → R be real functionals satisfying
(2.10). Then there exist additive functions A,B : X → R, a quadratic function
Q : X → R and a function ϕ : [0,∞) → R such that for all x ∈ X,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(x) = 1
2 [A(x) + B(x) + Q(x) + ϕ(‖x‖) + h(0) + k(0)] ,

g(x) = 1
2 [A(x) − B(x) + Q(x) − ϕ(‖x‖) + h(0) + k(0)] ,

h(x) = A(x) + Q(x) + h(0),
k(x) = B(x) + Q(x) + k(0).

Conversely, the above functionals satisfy (2.10).
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2.4. Exponential functional equation

Assume that (X, 〈·|·〉) is an inner product space of dimension at least 2. Some
immediate consequences of Theorem 2.4 concerning the solutions f : X → R

of the conditional equation

f(x + y) = f(x)f(y) for all x, y ∈ X with x ⊥ y (2.11)

can be found, e.g., in Fochi [70].
We cite here two results from Baron and Rätz [22] and Baron and Forti

[19], respectively.

Theorem 2.22. Let T be a unit circle in C. Suppose that a function f : X → T
satisfies (2.11). If f is continuous at the origin, then there exist a real constant
c and a continuous linear functional g : X → R such that

f(x) = e i(c‖x‖2+g(x)) for all x ∈ X.

Theorem 2.23. Suppose that a function f : X → C satisfies (2.11). If there
exist a neighbourhood U ⊂ X of the origin and a positive real constant β such
that

|f(x)| ≤ β�(f(x)) (2.12)

for every x ∈ U , then either f vanishes on X, or

f(x) =

{
0 if x ∈ X \ {0},

1 if x = 0,
(2.13)

or there exist additive functions a : R → R and A : X → R, a real constant c
and a continuous linear functional g : X → R such that

f(x) = exp
(
a(‖x‖2) + A(x) + i(c‖x‖2 + g(x))

)
for all x ∈ X. (2.14)

Before stating the next result we will recall some notion. Namely, we say
that f : X → C is measurable on rays if and only if for every x ∈ X the
function t �→ f(tx), t ∈ R, is Lebesgue or Baire measurable.

Baron et al. in [20] were studying solutions f : X → C of (2.11), different
from zero at every point, assuming that the function x �→ f(x)

|f(x)| , x ∈ X,
is continuous at the origin or measurable on rays. As a result they obtained
among others the following.

Theorem 2.24. Suppose f : X → C satisfies (2.11). Then either f vanishes on
X \ {0} or f(x) �= 0 for every x ∈ X. Moreover,

(i) if f is continuous at the origin, then either f vanishes on X or there
exist a complex constant c and an R-linear and continuous g : X → C

such that
f(x) = ec‖x‖2+g(x) for all x ∈ X; (2.15)
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(ii) if f is measurable on rays, then either f vanishes on X or has the form
(2.13), or f has the form (2.15) with some complex constant c and an
R-linear function g : X → C.

Later on, still with the assumption that X is an inner product space, the
studies were going in two directions.

First, instead of having (2.12) on a neighbourhood of zero it can be assumed
that it is valid on a Christensen measurable set which is not a Christensen zero
set (and β = 2) on a Polish space, or it is valid on a second category set with
the Baire property (and β = 2), or it is valid on a set that has an algebraically
interior point2. In each case we derive that the solution f has to have the
form (2.14) with some uniquely determined additive functions a : R → R and
A : X → R, a linear function g : X → R, and a real constant c (see Brzdęk [30,
Corollary 5]).

The second approach is in the spirit of Theorem 2.24 (see Brzdęk [31,
Theorem 3]).

Theorem 2.25. Assume that f : X → C satisfies (2.11) and suppose that one
of the conditions is valid:

(i) X is a Polish space and f is Christensen measurable;
(ii) X is a Baire space and f is Baire measurable;
(iii) f is continuous at a point.
Then either f vanishes on X, or f is of the form (2.13), or f has the form
(2.15) with some c ∈ C and a continuous R-linear functional g : X → C.

Another result under some measurability assumptions can be found in
Brzdęk [33, Corollary 3].

We may also generalize the domain. Instead of an inner product space,
we may consider an orthogonality space. We cite here one of the results from
Brzdęk [32].

Theorem 2.26. Let (X,⊥) be an orthogonality space and f : X → C be a
nonzero solution of (2.11), hemicontinuous at the origin. Then there exist
c ∈ C, unique linear functionals a1, a2 : X → R, and a symmetric bilinear func-
tional L : X2 → R, unique up to a multiplicative constant, such that L(x, y) = 0
whenever x ⊥ y and

f(x) = exp(a1(x) + ia2(x) + cL(x, x)) for all x ∈ X.

Instead of an orthogonality space in the domain we may also consider a
normed space with the isosceles James orthogonality. Brzdęk [34] proved the
following.

2In a real linear space X we say that x ∈ X is an algebraically interior point of a set D ⊂ X
provided that for every z ∈ X \ {0}, there is cz ∈ R, cz > 0 such that x + cz ∈ D for every
c ∈ (−cz , cz).
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Theorem 2.27. Let X be a real normed linear space which is not an inner
product space, dim X ≥ 3, and let (S, ·) be a commutative semigroup with a
neutral element. Suppose f : X → S satisfies (2.11) and there exists a nonzero
element x0 in X such that f(x0) is invertible in S. Then f is (unconditionally)
exponential.

A simple consequence of the above is the fact that if we have a (commu-
tative) field in the domain, then each orthogonally exponential mapping is
(unconditionally) exponential.

2.5. Other classical equations

2.5.1. D’Alembert equation. It is interesting to compare the families of solu-
tions of the functional equation characterizing the cosine function with its
correspondent equation postulated only for orthogonal vectors (see Fochi [72]).

We restrict ourselves to inner product spaces (X, 〈·|·〉) with dimension not
less then 2.

It is easy to see that the function f : X → R,

f(x) = eh(‖x‖2) for all x ∈ X,

where h : R → R is an arbitrary additive function, is a solution of

f(x + y) + f(x − y) = 2f(x)f(y) for all x, y ∈ X with x ⊥ y, (2.16)

but it is not necessarily a solution of

f(x + y) + f(x − y) = 2f(x)f(y) for all x, y ∈ X. (2.17)

So, the class of solutions of the functional equation (2.16) is a proper subset of
the class of solutions of (2.17). Therefore, in order to characterize in the class
of solutions of (2.16) the functions f which satisfy (2.17), it is reasonable to
add a suitable condition on f .

Theorem 2.28. (Fochi [72]) A non identically zero functional f : X → R is a
solution of (2.17) if and only if f satisfies (2.16) and

f(2x) = 2f(x)2 − 1 for all x ∈ X.

In [73], Fochi was dealing with some other classical trigonometric functional
equations related to (2.16), namely

f(x + y)f(x − y) = f(x)2 + f(y)2 for all x, y ∈ X with x ⊥ y

and

f(x + y)f(x − y) = f(x)2 + f(y)2 − 1 for all x, y ∈ X with x ⊥ y.
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2.5.2. Alternative Cauchy equation. Next to the Cauchy functional equation
we may consider its alternative form, namely

f(x + y)2 = [f(x) + f(y)]2 (2.18)

or, more generally,

‖f(x + y)‖ = ‖f(x) + f(y)‖.

Similarly as in previous cases, we will study the conditional equation

f(x + y)2 = [f(x) + f(y)]2 for all x, y ∈ X with x ⊥ y. (2.19)

One can see (cf. Fochi [74]) that already in inner product spaces the solutions
of (2.19) differ from solutions of the orthogonal additivity equation (2.1).

Example 2.3. Let h : R → R be a given non-trivial additive function and
x0 ∈ X \ {0} be a fixed vector. For every x ∈ X define

f(x) =

{
h(〈x|x0〉) if x = λx0, λ ∈ R,

−h(〈x|x0〉) if x �= λx0, λ ∈ R.

Then f satisfies (2.19), but it is not orthogonally additive.

First, we present results describing separately the odd and the even solu-
tions of (2.19).

Theorem 2.29. (Fochi [74]) Let X be an inner product space with dim X ≥ 3
and let f : X → R be a solution of the functional equation (2.19).

(i) If f is odd, then there exists an additive mapping h : X → R such that
|f(x)| = |h(x)| for all x ∈ X.

(ii) If f is even, then f is orthogonally additive, i.e., there exists an additive
mapping ϕ : R → R such that f(x) = ϕ(‖x‖2) for all x ∈ X.

With some additional assumption on f we have the following result.

Theorem 2.30. (Fochi [74]) Let X be an inner product space with dim X ≥ 3
and let f : X → R vanish only at zero. Then f satisfies (2.19) if and only if,
f is orthogonally additive.

Similar investigations concerning the orthogonal forms of functional equa-
tions are done in Fochi’s paper [75], where the author considers the conditional
equation

[f(x + y) − f(x)]2 = f(y)2 for all x, y ∈ X with x ⊥ y.
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2.5.3. Cocycle equation. In 1998, Sikorska [165] asked about solutions of the
conditional cocycle equation

F (x + y, z) + F (x, y) = F (x, y + z) + F (y, z) for all x, y, z ∈ X

with x ⊥ y, y ⊥ z, z ⊥ x. (2.20)

For a non-conditional case of the equation we have the following
Theorem. (Davison and Ebanks [52]) Let M be a cancellative Abelian monoid
and let G be a divisible Abelian group. Then for every symmetric solution
F : M2 → G of the equation

F (x + y, z) + F (x, y) = F (x, y + z) + F (y, z) for all x, y, z ∈ M

there exists a function f : M → G such that

F (x, y) = f(x) + f(y) − f(x + y) for all x, y ∈ M.

Hypothesis. Let (X, 〈·|·〉) be a real inner product space, dimX ≥ 3, and let
(G,+) be a divisible Abelian group (for example G = R).

Then for every symmetric solution F : X2 → G of the conditional func-
tional equation (2.20) there exists a function f : X → G such that

F (x, y) = f(x) + f(y) − f(x + y) for all x, y ∈ X with x ⊥ y.

The assumption dim X ≥ 3 in the Hypothesis allows us to avoid the neces-
sity of using zero vectors. Rätz [154,155] showed that just in these trivial cases
we already have some variety. Namely, if dimX ≤ 1, the function F has to be
a Cauchy difference, while if dim X = 2, it is not the case.

Problem 2.6. Prove or disprove the above Hypothesis.

It is worth pointing out that an interesting and fruitful approach for arith-
metic functions satisfying a conditional cocycle equation was done by Kochanek
in [111, Lemma 2.2].

2.6. Arithmetic functions

As already observed by Rätz [156], there are connections between Pinsker
theory, as sometimes the considered theory is called, and additive number-
theoretical (arithmetic) functions. Consider for functions f : N → R the con-
ditional functional equation

f(mn) = f(m) + f(n) for all m,n ∈ N with m ⊥rp n, (2.21)

where in this case the orthogonality sign ⊥rp means that two elements are
relatively prime, i.e., (m,n) = 1.

Several mathematicians were looking for conditions which force an arith-
metic additive function to be of the form c log n. The first two results of this
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type, due to Erdős [65], assert that it is the case if f satisfies one of the
following conditions:

(i) f is monotone,
(ii) limx→∞(f(x + 1) − f(x)) = 0.

Rényi in [158] gave a simplified and elegant proof of the Erdős theorem in
the case (ii). Later, Kátai [108] and Máté [127] strengthened the assertion,
assuming
(iii) lim infx→∞(f(x + 1) − f(x)) ≥ 0,
instead of (ii).

Schoenberg [162] extended (2.21) to the form

f(xy) = f(x) + f(y) for all x, y ∈ Q+ with x ⊥rp y (2.22)

for functions f : Q+ → R, where the relation x ⊥rp y is understood as follows:
if x = m

n and y = k
l , for some positive integers m,n, k, l, are two reduced

fractions, we say that x and y are relatively prime if (m, k) = (m, l) = (n, k) =
(n, l) = 1. Schoenberg proves that solutions of (2.22) are in fact additive on
the set of positive rationals.

3. Stability of functional equations postulated for orthogonal vectors

3.1. Cauchy functional equation

3.1.1. Hyers–Ulam stability. The origin of the stability problem traces back
to Ulam (see [191,192]), who in 1940 asked to give conditions for the existence
of a linear mapping near an approximately linear one. If f is a function from
a normed linear space (X, ‖ · ‖) into a Banach space (Y, ‖ · ‖) which satisfies
with some ε > 0 the inequality

‖f(x + y) − f(x) − f(y)‖ ≤ ε for all x, y ∈ X,

then Hyers [98] proved that there exists a unique additive mapping a : X → Y
such that

‖f(x) − a(x)‖ ≤ ε for all x ∈ X.

Moreover, if R � t �→ f(tx) ∈ Y is continuous for any fixed x ∈ X, then a is
linear (see also Rassias [146]). It should be mentioned that a version of Ulam’s
problem for real sequences appeared in the book of Pólya and Szegő [144].

Nowadays the theory of Hyers–Ulam stability is widely developed; one can
consult, e.g., Forti [77], Hyers et al. [99], Jung [105], Moszner [137].

We start this section with citing a result by Ger and Sikorska [89, Theorem
1 and Remark 3] concerning the stability of the Cauchy functional equation
postulated for orthogonal vectors in an orthogonality space.
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Theorem 3.1. Let (X,⊥) be an orthogonality space. Given ε ≥ 0 and a real
Banach space (Y, ‖ · ‖), let f : X → Y be a mapping such that

‖f(x + y) − f(x) − f(y)‖ ≤ ε for all x, y ∈ X with x ⊥ y. (3.1)

Then there exists exactly one orthogonally additive mapping g : X → Y such
that

‖f(x) − g(x)‖ ≤ 16
3

ε for all x ∈ X.

Actually, the norm structure in Y may be avoided. We have (see Ger and
Sikorska [89, Remark 4])

Theorem 3.2. Let (X,⊥) be an orthogonality space and let Y be a real sequen-
tially complete Hausdorff linear topological space. Assume that a bounded con-
vex and symmetric with respect to zero set V ⊂ Y and a mapping f : X → Y
are given such that

f(x + y) − f(x) − f(y) ∈ V for all x, y ∈ X with x ⊥ y.

Then there exists exactly one orthogonally additive mapping g : X → Y such
that

f(x) − g(x) ∈ 16
3

seq cl V for all x ∈ X.

In fact, some stability results for A-orthogonal vectors in Hilbert spaces
appeared already in the paper by Drljević and Mavar [64], but just [89] gave
probably a rise to a huge number of papers considering various kinds of stability
problems of various functional equations postulated for orthogonal vectors.

It is worth recalling that the orthogonally additive mapping appearing in
the assertion of Theorems 3.1 and 3.2 is of the form a + q, where a is additive
and q is quadratic (cf. Theorem 2.3).

Similar results can be obtained in case (X, ‖ · ‖) is a real normed linear
space with dim X ≥ 2 and with the James orthogonality relation on X (see
Sikorska [164] or [168]).

Problem 3.1. Is the orthogonal Cauchy functional equation stable if we con-
sider as a domain a real normed linear space with the Pythagorean orthogo-
nality?

In 2010, Fechner and Sikorska [69] published a generalization of the above
results (see also Sikorska [173]). Also, the estimating constant was sharpened.

Theorem 3.3. Let X be an Abelian group and let ⊥ be a binary relation defined
on X with the properties:

(α) if x, y ∈ X and x ⊥ y, then we have x ⊥ −y, −x ⊥ y and 2x ⊥ 2y;
(β) for every x ∈ X, there exists y ∈ X such that x ⊥ y and x + y ⊥ x − y.
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Further, let (Y, ‖ · ‖) be a (real or complex) Banach space. Given ε ≥ 0, let
f : X → Y be a mapping such that

‖f(x + y) − f(x) − f(y)‖ ≤ ε for all x, y ∈ X with x ⊥ y. (3.2)

Then there exists a mapping g : X → Y such that

g(x + y) = g(x) + g(y) for all x, y ∈ X with x ⊥ y, (3.3)

and
‖f(x) − g(x)‖ ≤ 5ε, (3.4)

for all x ∈ 2X = {2x : x ∈ X}. Moreover, the mapping g is unique on the set
2X.

In case X is uniquely 2-divisible, we get (3.4) on the whole group X; how-
ever, there are examples of non-trivial groups with 2X = {0} for which our
assertion does not bring much information.

Remark 3.1. The above results can be applied both in an orthogonality space
and in a normed space with James orthogonality. However, the problem remains
open in the case of Pythagorean orthogonality.

Along the results for functions with the domain being the whole space we
may consider orthogonal vectors only from some set. We give some results
where the role of this set is played by a ball (see Sikorska [166,167]).

We start with the results in an inner product space.

Theorem 3.4. Let X be a real inner product space, dim X = N (N ≥ 2), Y be
a real sequentially complete linear topological space, and let V be a nonempty
bounded convex and symmetric with respect to zero subset of Y . Let, further,
B denote a ball in X centered at the origin. If a function f : B → Y fulfils the
condition

f(x+y)−f(x)−f(y) ∈ V for all x, y ∈ B with x+y ∈ B and x ⊥ y, (3.5)

then there exist additive functions a : X → Y , b : R → Y and a constant
k = k(N) such that

f(x) − a(x) − b(‖x‖2) ∈ k seq cl V for all x ∈ B.

Remark 3.2. It is easy to see that g = a + b ◦ ‖ · ‖2 is orthogonally additive
but, in general, such g is not uniquely determined.

Example 3.1. Let X = R
2 with the Euclidean norm, Y = R, B = {x ∈ X :

‖x‖ ≤ 1} and let f : B → R be an additive function. Obviously, for all vectors
x, y ∈ B such that x + y ∈ B and x ⊥ y we have

|f(x + y) − f(x) − f(y)| ≤ ε.

Then both g1 := f and g2(x) := f(x) + c · x, x ∈ R
2, with constant c ∈ R

2

such that ‖c‖ < kε, fulfil the condition
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|f(x) − g(x)| ≤ kε for all x ∈ B

(the sign “·” stands here for the standard inner product in R
2).

Assume now that the domain (X, ‖ · ‖) is a real normed linear space with
Birkhoff orthogonality, dimX = N ≥ 2, the target space Y is a real sequen-
tially complete linear topological space, and V is a nonempty, bounded subset
of Y which is convex and symmetric with respect to zero.

Theorem 3.5. If f : B → Y fulfils the condition (3.5) with the Birkhoff orthog-
onality relation ⊥, then there exist an additive function a : X → Y , a quadratic
function q : X → Y and a constant K = K(N) such that

f(x) − a(x) − q(x) ∈ K seq cl V for all x ∈ 1
2
B.

The above result is slightly weaker than expected. Apart from the fact that
the approximating function g := a + q is not uniquely determined, it does not
need to be orthogonally additive, it means that the quadratic part may fail to
be orthogonally additive.

Example 3.2. Take f : R2 → R which is additive and assume that a norm ‖·‖ in
R

2 does not come from an inner product. Consider the Birkhoff orthogonality
in R

2. Then of course, f satisfies (3.5).
Take an arbitrary ε > 0 and define g : R2 → R as g(x) := f(x)+ c(x2

1 +x2
2)

for all x = (x1, x2) ∈ R
2 and with a real constant c such that |c| ≤ 4Kε

α , where
α is a positive number such that for all x ∈ R

2 we have (x2
1 + x2

2) ≤ α‖x‖2

(since the Euclidean norm and ‖ · ‖ are equivalent). It is easy to show that
g − f is quadratic.

Moreover, for every x ∈ 1
2B, where B is a unit ball in R

2, we have

|f(x) − g(x)| =
∣∣c(x2

1 + x2
2)
∣∣ < Kε.

However, the function g is not orthogonally additive on the half-ball. To see
this, take arbitrary x = (x1, x2) and y = (y1, y2) from 1

2B such that x ⊥ y and
note that

g(x + y) − g(x) − g(y) = 2c(x1y1 + x2y2).

The above difference cannot always be zero. Otherwise the orthogonality rela-
tion in the sense of Birkhoff would be equivalent to the orthogonality relation
connected with some inner product defined on R

2, which leads to a contradic-
tion.

Assume now that (X, ‖ · ‖) is a real uniformly convex space3 with Birkhoff
orthogonality relation, dimX = N ≥ 2, and Y , V and B are the same as
before. This time we get an approximation on the whole ball.

3A normed linear space (X, ‖ · ‖) is called uniformly convex if and only if for every ε > 0
there exists δ(ε) > 0 such that for all x, y ∈ X if ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε then∥∥ 1
2
(x + y)

∥∥ < 1 − δ(ε).
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Theorem 3.6. If a function f : B → Y satisfies (3.5), then there exist an
additive function a : X → Y , a quadratic function q : X → Y and a constant
c = c(N) such that

f(x) − a(x) − q(x) ∈ c seq cl V for all x ∈ B.

3.1.2. Generalized stability. In what follows we consider the conditional
inequality

‖f(x + y) − f(x) − f(y)‖ ≤ ϕ(x, y) for all x, y ∈ X with x ⊥ y (3.6)

with some function ϕ : X × X → [0,∞) (see Sikorska [168]; cf. also Găvruţa
and Găvruţa [80]).

Let (X,⊥) be an orthogonality space with λ = 1 (see Sect. 1.1.8). Consider
a function ϕ : X × X → [0,∞) such that

(a) for every x ∈ X the series
∑∞

n=1 2−nϕ(2n−1x, 2n−1x) is convergent or for
every x ∈ X the series

∑∞
n=1 2n−1ϕ(2−nx, 2−nx) is convergent; denote

such a sum by Φ(x);
(b) for every x ∈ X the series

∑∞
n=0 41−nϕ(2n−1x, 2n−1x) is convergent or

for every x ∈ X the series
∑∞

n=1 4nϕ(2−nx, 2−nx) is convergent; denote
such a sum by Ψ(x);

(c) for all x, y ∈ X such that x ⊥ y we have

lim
n→∞ 2−nϕ(2nx, 2ny) = 0 or lim

n→∞ 2nϕ(2−nx, 2−ny) = 0

for respective cases from (a);
(d) for all x, y ∈ X such that x ⊥ y we have

lim
n→∞ 4−nϕ(2nx, 2ny) = 0 or lim

n→∞ 4nϕ(2−nx, 2−ny) = 0

for respective cases from (b);
(e) there exists M > 0 such that for all x, y ∈ X, if x ⊥ y and x + y ⊥ x − y

then

max
{
ϕ
(± x,±y

)
, ϕ
(± (x + y),±(x − y)

)} ≤ Mϕ(x, x).

Theorem 3.7. Let (X,⊥) be an orthogonality space, (Y, ‖ · ‖) be a real Banach
space and let ϕ : X × X → [0,∞) satisfy conditions (a)–(e). If a function
f : X → Y satisfies (3.6), then there exists exactly one orthogonally additive
function g : X → Y such that

‖f(x) − g(x)‖ ≤ M [3Φ(x) + Ψ(x)] for all x ∈ X.

Remark 3.3. An analogous approach is used while studying the generalized
orthogonal stability of the Jensen functional equation∥∥∥∥f

(
x + y

2

)
− f(x) + f(y)

2

∥∥∥∥ ≤ ϕ(x, y) for all x, y ∈ X with x ⊥ y,
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or Pexider functional equation. For the latter one, see the beginning of the
paper by Fechner and Sikorska [68]. For the former one we should have a
function ϕ with the properties
(a)′ for every x ∈ X the series

∑∞
n=1 21−nϕ(2nx, 0) is convergent or for every

x ∈ X the series
∑∞

n=1 2nϕ(21−nx, 0) is convergent; denote such a sum
by Λ(x);

and (c) with conditions corresponding to the respective cases from (a)′. We
use here only (i) and (iii) with α = β from the properties of the orthogonality
space.

Let f̄ := f − f(0). Then f̄(0) = 0 and by the assumptions we get the
existence of an orthogonally additive mapping a such that

‖f̄(x) − a(x)‖ ≤ Λ(x) for all x ∈ X.

3.1.3. Some applications. By means of the results from the last section we may
prove various kinds of “sandwich” theorems, where we separate orthogonally
subadditive (3.7) and orthogonally superadditive (3.8) functions. We give here
one example (cf. Fechner and Sikorska [68, Proposition 3]). More examples and
more general forms of the theorem can be found in [68].

Theorem 3.8. Let (X, ‖ · ‖) be a real normed space, dim X ≥ 2, with Birkhoff
orthogonality. Assume that p, q : X → R satisfy

p(x + y) ≤ p(x) + p(y) for all x, y ∈ X with x ⊥B y, (3.7)
q(x + y) ≥ q(x) + q(y) for all x, y ∈ X with x ⊥B y (3.8)

and

q(x) ≤ p(x) for all x ∈ X.

If p(x) − q(x) ≤ c‖x‖r for all x ∈ X, where c, r are positive constants and
r > 2, then there exists a unique orthogonally additive mapping f : X → R

such that with some positive constant d,

q(x) − d‖x‖r ≤ f(x) ≤ p(x) + d‖x‖r for all x ∈ X.

With some additional assumptions imposed on the functions p and q we
get the approximation q ≤ f ≤ p in the above theorem (see [68, Theorem 3]).

Some other results on orthogonally superadditive functions can be found
in Fechner [67].

3.1.4. Functional congruences. Let X be a real linear space and let ⊥ be
an orthogonality relation defined in this space. Let F and F (2) be classes of
functions defined on X and on X2, respectively, and with values in a group
(Y,+). We say that the pair (F ,F (2)) has the orthogonal double difference
property if every function f : X → Y satisfying f(x + y) − f(x) − f(y) ∈ F (2)

for orthogonal vectors is of the form f = g + A, where g ∈ F and A is
orthogonally additive.
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In the classical stability problem the classes F and F (2) are the classes of
bounded functions. But similarly we can consider other pairs (F ,F (2)), namely
with integer valued functions or, more general, classes of functions with values
in a given discrete subgroup.

The first result comes from papers by Baron and Rätz [22] and Baron [15].

Theorem 3.9. Let X be a real inner product space with dim X ≥ 2, (G,+) a
topological Abelian group, and K a discrete subgroup of G. If f : X → G fulfils
the condition

f(x + y) − f(x) − f(y) ∈ K for all x, y ∈ X with x ⊥ y, (3.9)

and it is continuous at a point, then there exist continuous additive functions
a : R → G and A : X → G such that

f(x) − a(‖x‖2) − A(x) ∈ K for all x ∈ X. (3.10)

In fact the above result (see Baron [15]) was first proved by Baron and Rätz
in [22] under the additional assumption that G is continuously divisible by 2
(the function u �→ 2u is a homeomorphism of G onto G), and f is continuous at
the origin. Brzdęk [31] generalized the result of Baron and Rätz [22] showing
that f can be supposed continuous at any point and that the assumption
concerning G can be replaced by a weaker one: 2u �= 0 for u ∈ G \ {0}.

The representation obtained in the above theorem does not remain valid
without a regularity condition. In order to see this we may consider a function
ϕ : R → R such that ϕ(s + t) − ϕ(s) − ϕ(t) ∈ Z for all s, t ∈ R, but for every
additive function a : R → R there exists t ∈ R such that ϕ(t) − a(t) �∈ Z. The
existence of such a function follows from Godini’s paper [92, Example 2]. We
use this ϕ in the following two examples (see Baron and Rätz [22]).

Example 3.3. Define f : R2 → R by the formula f(x1, x2) = ϕ(x1). Then

f(x + y) − f(x) − f(y) ∈ Z for all x, y ∈ R
2

and one can show that there is no additive function A : R2 → R such that

f(x) − A(x) ∈ Z for all x ∈ R
2.

Example 3.4. Define f : R2 → R by the formula f(x) = ϕ(‖x‖2). Then

f(x + y) − f(x) − f(y) ∈ Z for all x, y ∈ R
2 with x ⊥ y,

and one can show that there are no additive functions a : R → R and A : R2 →
R such that

f(x) − a(‖x‖2) − A(x) ∈ Z for all x ∈ R
2.

A particular case where the target space is the space of reals and the discrete
subgroup is the set of integers was examined first by Baron and Forti in [19].
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Theorem 3.10. Let X be a real inner product space with dim X ≥ 2. Suppose
f : X → R satisfies

f(x + y) − f(x) − f(y) ∈ Z for all x, y ∈ X with x ⊥ y. (3.11)

If there exist a neighbourhood U of the origin and γ ∈ (0, 1/4) such that f(U) ⊂
(−γ, γ)+Z, then there exist a real constant c and a continuous linear functional
h : X → R such that

f(x) − c‖x‖2 − h(x) ∈ Z for all x ∈ X. (3.12)

Brzdęk [30] showed that an analogous result can be obtained in the cases:
U is a set of the second category and with the Baire property, or U is a
Christensen measurable nonzero set, or U has an algebraically interior point.

Theorem 3.11. Let X be a real inner product space with dim X ≥ 2,
γ ∈ R, γ > 0, D ⊂ X, and let f : X → R be a functional satisfying (3.11) such
that f(D) ⊂ (−γ, γ) +Z. Suppose that one of the three following conditions is
valid:

(i) X is a Polish space, D is a Christensen measurable set which is not a
Christensen zero set, and γ = 1

6 ;
(ii) D is of the second category and with the Baire property and γ = 1

6 ;
(iii) D has an algebraically interior point and γ < 1

4 .
Then there exist a unique linear functional h : X → R and a unique constant
c ∈ R such that (3.12) is satisfied. Moreover, if (ii) holds then h is continuous.

The following theorem describes the functions which are Christensen or
Baire measurable and for which the Cauchy difference is in a discrete subgroup
(Brzdęk [31]).

Theorem 3.12. Assume that X is a real inner product space with dim X ≥ 2,
(G,+) is an Abelian topological group and K a discrete subgroup of G, x+x �= 0
for x ∈ G, x �= 0. Let f : X → G be a function satisfying (3.9). If one of the
conditions

(i) X is a Polish space, G is σ-bounded 4 and f is Christensen measurable;
(ii) X is a Baire space

is satisfied, then there exist continuous additive functions a : R → G and
A : X → G such that (3.10) holds.

In all the results we were considering so far the domain was an inner product
space. Of course, it is also possible to think of a linear space with an abstract
orthogonality relation, or even of a group with orthogonality in the sense of
Baron and Volkmann [24] (see Sect. 1.1.11).

4We say that a topological group (G, +) is σ-bounded provided that, for every open neigh-
bourhood U ⊂ G of 0 there is a sequence (xn : n ∈ N) ⊂ G with H =

⋃{U +xn : n ∈ N}. For
instance, every topological group (G, +) possessing a dense countable subset is σ-bounded.
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In [33], Brzdęk studied universally, Christensen or Baire measurable func-
tions defined on a real linear topological space with axiomatic orthogonality
relation by Rätz, and with values in C. In [198], Wyrobek-Kochanek proved
the following result.

Theorem 3.13. Assume that (G,+) is an Abelian topological group such that
the mapping u �→ 2u, u ∈ G, is a homeomorphism and the following condi-
tion holds: every neighbourhood of zero in G contains a neighbourhood U of
zero such that U ⊂ 2U and G =

⋃{2nU : n ∈ N}. Assume that ⊥ is an
orthogonality relation in G in the sense of Baron and Volkmann, (H,+) is an
Abelian topological group and K is a discrete subgroup of H. Then a function
f : G → H continuous at a point satisfies

f(x + y) − f(x) − f(y) ∈ K for all x, y ∈ G with x ⊥ y (3.13)

if, and only if, there exist a continuous additive function a : G → H and a
continuous biadditive and symmetric function b : G × G → H such that

f(x) − a(x) − b(x, x) ∈ K for all x ∈ G (3.14)

and
b(x, y) = 0 for all x, y ∈ G with x ⊥ y. (3.15)

Moreover, a and b are uniquely determined.

Theorem 3.13 generalizes earlier results from the paper by Baron and Kucia
[21] and also Theorem 2.9 from [32] (where Brzdęk obtained the continuity of
q(x) := b(x, x), x ∈ X, only at a point).

Assume that G is a topological Abelian group, M is a σ-algebra and I is a
proper σ-ideal of subsets of G which fulfil the condition

0 ∈ Int (A − A) if A ∈ M \ I.

Continuing the studies of Brzdęk from [33] (for functions from an orthogonality
space to the complex field), Kochanek and Wyrobek [114], working now on
groups with the orthogonality relation in the sense of Baron and Volkmann,
faced a problem: under what assumptions does an M-measurable mapping f
from (G,+) into an Abelian topological group (H,+), which is orthogonally
additive modulo K, a discrete subgroup of H, admit a factorization (3.14)
with a continuous additive function a : G → H and a continuous biadditive
function b : G × G → H?

Namely, they have obtained the following results.

Theorem 3.14. [114, Theorem 1] Assume that H is a separable metric group,
(G1) the mapping G � x �→ 2x is a homeomorphism,
(G2) every neighbourhood of zero in G contains a neighbourhood U of zero

such that U ⊂ 2U and G =
⋃{2nU : n ∈ N},

(G3) either G is a first countable Baire group, or G is metric separable, or G
is metric and M contains all Borel subsets of G,
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(G4) x ± 2A ∈ M for all x ∈ G and A ∈ M.
Then an M-measurable function f : G → H satisfies (3.13) if and only

if there exist a continuous additive function a : G → H and a continuous
biadditive symmetric function b : G×G → H such that the factorization (3.14)
is valid and (3.15) is satisfied. Moreover, the functions a and b are uniquely
determined.

Corollary 3.1. [114, Corollary 1] Assume that H is a separable metric group
and (G1),(G2) hold. If either G is a first countable Baire group and f : G → H
is Baire measurable, or G is a Polish group and f : G → H is Christensen
measurable, then f satisfies (3.13) if and only if there exist a continuous
additive function a : G → H and a continuous biadditive symmetric function
b : G × G → H such that (3.14) and (3.15) hold. Moreover, the functions a
and b are uniquely determined.

Baire and Christensen measurable solutions of (3.13) were examined before
by Brzdęk in [31] for the orthogonality given by an inner product (in inner
product spaces) and in [33] for more abstract orthogonality in linear topological
spaces.

Under weaker assumptions Kochanek and Wyrobek obtained the factor-
ization (3.14) with separately continuous biadditive function only (as it is in
Brzdęk [33, Theorem 1]).

Theorem 3.15. [114, Theorem 2] Assume (G1), (G2), (G4) and let H be a
separable metric group. Then an M-measurable function f : G → H satisfies
(3.13) if and only if there exist a continuous additive function a : G → H and
a biadditive symmetric function b : G × G → H, continuous in each variable,
such that (3.14) and (3.15) hold. Moreover, the functions a and b are uniquely
determined.

Studying pexiderized forms of the Cauchy difference often brings interesting
and surprising results (cf., e.g., Sikorska [170]). Pexiderized forms of (3.13) were
investigated by Bajger [12] and Wyrobek-Kochanek [199].

3.1.5. Orthogonal additivity almost everywhere. Assume that f is defined on
the Euclidean space X = R

n and takes values in an Abelian group (Y,+).
Kochanek and Wyrobek-Kochanek [115] were studying the functions which
satisfy (2.1) almost everywhere in a sense that

f(x + y) = f(x) + f(y) for all (x, y) ∈ {(x, y) ∈ X2 : 〈x|y〉 = 0} \ Z,

where Z is a negligible subset of the (2n − 1)-dimensional manifold ⊥⊂ R
2n.

They have concluded that f coincides almost everywhere with some orthog-
onally additive mapping.

Considerations of this type go back to a problem posed by Erdős [66],
concerning the unconditional version of the Cauchy functional equation. It
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was solved by de Bruijn [29] and, independently, by Jurkat [106], and also
generalized by Ger [83].

3.1.6. Nearly additive set functions. At the end of Sect. 2.1.1 we observed
that additive set functions may be treated as examples of orthogonally additive
mappings. Now we present some results concerning the stability of Eq. (2.5).

Theorem 3.16. (Kalton and Roberts [107]) Let M be an algebra of sets and
f : M → R be a function satisfying

|f(A ∪ B) − f(A) − f(B)| ≤ 1 for all A,B ∈ M with A ∩ B = ∅.

Then there exist a constant C < 45 and an additive set-function μ : M → R

such that

|f(A) − μ(A)| ≤ C for all A ∈ M.

Pawlik [142] gave an example showing that C ≥ 3
2 .

The above theorem was a motivation for Kochanek to study the stability
problem for vector measures (understood as finitely additive set functions) (see
[112]). He was investigating the properties of those Banach spaces which have
the so called SVM (stability of vector measures) property; namely, we say that
a Banach space X has the SVM property if there exists a constant v(X) < ∞
(depending only on X) such that given any set algebra M and any mapping
ν : M → X satisfying

‖ν(A ∪ B) − ν(A) − ν(B)‖ ≤ 1 for all A,B ∈ M with A ∩ B = ∅,

there is a vector measure μ : M → X such that

‖ν(A) − μ(A)‖ ≤ v(X) for all A ∈ M.

3.1.7. Arithmetic functions. A natural stability question for arithmetic addi-
tive functions may be formulated as (see Kochanek [109]): assume that for a
fixed ε ≥ 0 we have the conditional inequality

|f(mn) − f(m) − f(n)| ≤ ε for all m,n ∈ N with m ⊥rp n. (3.16)

Does it imply that f is approximately equal to some arithmetic additive func-
tion, that is a function satisfying (2.21)? Of course the condition that m and n
are relatively prime, appearing in (3.16), causes that the direct method using
Cauchy sequences cannot be used.

Considering results of Erdős, Kátai, Máté (see [65,108,127]),
Kochanek [109] proved the following.

Theorem 3.17. Assume that a function f : N → R satisfies (3.16) and

lim inf
n→∞ (f(n + 1) − f(n)) ≥ 0.

Then there exists c ∈ R such that

|f(n) − c log n| ≤ ε for all n ∈ N.
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In order to express the next result we make some notations. Let P be the
set of all prime numbers and for each n ∈ N let Pn = {p ∈ P : p|n}.

Theorem 3.18. (Kochanek [111]) There is an absolute constant C ≤ 89
2 having

the property: if a function f : N → R satisfies (3.16) and

|f(m) − f(n)| ≤ 2ε for all m,n ∈ N with Pm = Pn,

where ε ≥ 0 is a fixed constant, then there exists a strongly additive function5

g : N → R such that |f(n) − g(n)| ≤ Cε for all n ∈ N.

The above theorem gives a stability result for strongly additive functions,
but the basic problem remains open.

Problem 3.2. (Kochanek [111]) Assume that f : N → R satisfies (3.16) with
some ε ≥ 0. Does there exist an additive arithmetic function g : N → R such
that |f(n) − g(n)| ≤ Lε for all n ∈ N, where L is an absolute constant?

Some other stability results for additive arithmetic functions one can find
in the papers [109–111] by Kochanek.

3.2. Quadratic functional equation

In this section we consider the stability problem for the quadratic equation for
functions from a space X with an orthogonality relation into a real Banach
space. So, our starting point is the conditional functional inequality

‖f(x + y) + f(x − y) − 2f(x) − 2f(y)‖ ≤ ε for all x, y ∈ X with x ⊥ y
(3.17)

or, in more general form,

‖f(x+y)+f(x−y)−2f(x)−2f(y)‖ ≤ ϕ(x, y) for all x, y ∈ X with x ⊥ y,
(3.18)

for some function ϕ defined on X2.
To the best of our knowledge the first result on stability of an orthogonally

quadratic functional equation was given by Drljević [62]. His orthogonality
relation was defined on a complex Hilbert space (X, 〈·|·〉) by means of a self-
adjoint operator A : X → X as follows

x ⊥ y if and only if 〈Ax|y〉 = 0.

He assumed that the functions involved are continuous and his result states
what follows.

5A function f : N → R is called strongly additive if and only if it satisfies (2.21) and f(pn) =
f(p) for all n ∈ N and p ∈ P.
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Theorem 3.19. Let (X, 〈·|·〉) be a complex Hilbert space, dim X ≥ 3, A : X → X
a selfadjoint operator, dim A(X) ≥ 3, θ ≥ 0 and p ∈ [0, 2) real numbers, and
let f be a continuous functional defined on X. If

|f(x + y) + f(x − y) − 2f(x) − 2f(y)| ≤ θ
[|〈Ax|x〉|p/2 + |〈Ay|y〉|p/2

]
for all x, y ∈ X with 〈Ax|y〉 = 0 (we assume that 00 = 1), then g : X → C well
defined by

g(x) = lim
n→∞ 2−2nf(2nx) for all x ∈ X

is a continuous functional such that

g(x + y) + g(x − y) = 2g(x) + 2g(y) for all x, y ∈ X with 〈Ax|y〉 = 0.

Furthermore, there exists a real number ε > 0 such that

|f(x) − g(x)| ≤ |〈Ax|x〉|p/2ε for all x ∈ X.

For the case A = id, so with the classical definition of orthogonality defined
on an inner product space, and without the continuity assumption of a function
mapping now into a Banach space, we have the following (see Sikorska [168,
Theorem 5.1]).

Theorem 3.20. Let (X, ‖ · ‖) be a real normed linear space in which the norm
comes from an inner product, dim X ≥ 3, and let (Y, ‖ · ‖) be a real Banach
space. If a function f : X → Y satisfies

‖f(x + y) + f(x − y) − 2f(x) − 2f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (3.19)

for all x, y ∈ X with x ⊥ y, with some ε ≥ 0 and p ∈ R \ {2}, then there exists
a unique quadratic mapping q : X → Y such that

‖f(x) − q(x)‖ ≤ 3ε sgn (p − 2)
2p/2 − 2

‖x‖p for all x ∈ Xp,

where Xp = X if p ≥ 0 (with 00 := 1), and Xp = X \ {0} if p < 0.

The next theorem is based on a result by Moslehian [135] and proves the
stability of a pexiderized form of the orthogonally quadratic equation (2.9) for
functions defined on an orthogonality space. It does not, however, generalize
the previous results since it is assumed that f is odd.

Theorem 3.21. Suppose (X,⊥) is an orthogonality space with a symmetric
relation ⊥, (Y, ‖ · ‖) is a real Banach space, and f, g, h : X → Y are mappings
fulfilling

‖f(x + y) + f(x − y) − 2g(x) − 2h(y)‖ ≤ ε for all x, y ∈ X with x ⊥ y,
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where ε ≥ 0 is a fixed constant. Assume that f is odd. Then there exists exactly
one additive mapping A : X → Y such that for all x ∈ X,

‖f(x) − A(x)‖ ≤ 6ε,

‖g(x) − g(0) − A(x)‖ ≤ 7ε,

‖h(x) − h(0)‖ ≤ ε.

The stability of (2.10) was investigated by Mirzavaziri and Moslehian in
[130], also with some additional assumption on f .

3.3. Exponential functional equation

3.3.1. Formulation of the stability problem. The stability of an (uncondi-
tional) exponential equation was first considered by Baker et al. [14] and Baker
[13]. They studied a complex valued function f defined on a group, which sat-
isfies the condition

|f(x + y) − f(x)f(y)| ≤ ε,

for all x, y and for some fixed ε ≥ 0. As a result they obtained that f has to
be bounded or exponential.

As observed by Ger [85], taking into account the structure of the equa-
tion, it is more appropriate to consider the stability problem starting from the
inequality ∣∣∣∣ f(x + y)

f(x)f(y)
− 1
∣∣∣∣ ≤ ε

for a function f with values in C \ {0} with some fixed ε ≥ 0. In this case
there exists an exponential function close in a sense to f (see Ger [85], Ger
and Šemrl [88]).

A small modification of this approach is to consider for a complex valued
function the system of conditional inequalities∣∣∣∣ f(x + y)

f(x)f(y)
− 1
∣∣∣∣ ≤ ε for all x, y with f(x)f(y) �= 0

and ∣∣∣∣f(x)f(y)
f(x + y)

− 1
∣∣∣∣ ≤ ε for all x, y with f(x + y) �= 0

with some nonnegative constant ε (for this kind of approach in the case of
some other functional equation see, e.g., Chudziak [51]).

We were considering this approach while studying the stability of the
orthogonally exponential equation (see Sikorska [171]; cf. also Brzdęk and Siko-
rska [35] and Sikorska [172] for some similar or more general results).



Vol. 89 (2015) Orthogonalities and functional equations 255

Theorem 3.22. [171, Corollary 1] Assume that (X,⊥) is an orthogonality space
or a real normed space, dim X ≥ 3, with James orthogonality. If f : X → K ∈
{R,C} satisfies∣∣∣∣ f(x + y)

f(x)f(y)
− 1
∣∣∣∣ ≤ ε for all x, y ∈ X with x ⊥ y and f(x)f(y) �= 0

and ∣∣∣∣f(x)f(y)
f(x + y)

− 1
∣∣∣∣ ≤ ε for all x, y ∈ X with x ⊥ y and f(x + y) �= 0

for some nonnegative ε < 1, and f(x0) �= 0 for some x0 �= 0, then there exists
exactly one g : X → (0,∞) such that

g(x + y) = g(x)g(y) for all x, y ∈ X with x ⊥ y,

and for all x ∈ X,∣∣∣∣f(x)
g(x)

− 1
∣∣∣∣ ≤ (1 + ε)5 + 1 and

∣∣∣∣ g(x)
f(x)

− 1
∣∣∣∣ ≤ (1 + ε)5 + 1.

Moreover, if K = R, then for all x ∈ X,∣∣∣∣f(x)
g(x)

− 1
∣∣∣∣ ≤ (1 + ε)5 − 1 and

∣∣∣∣ g(x)
f(x)

− 1
∣∣∣∣ ≤ (1 + ε)5 − 1.

The next result concerns the stability of the pexiderized form of the orthog-
onally exponential equation.

Theorem 3.23. [171, Corollary 2] Assume that (X,⊥) is an orthogonality space
or a real normed space, dim X ≥ 3, with the James orthogonality relation. If
f1, f2, f3 : X → K satisfy∣∣∣∣ f1(x + y)

f2(x)f3(y)
− 1
∣∣∣∣ ≤ ε for all x, y ∈ X with x ⊥ y and f2(x)f3(y) �= 0,

and∣∣∣∣f2(x)f3(y)
f1(x + y)

− 1
∣∣∣∣ ≤ ε for all x, y ∈ X with x ⊥ y and f1(x + y) �= 0,

for some nonnegative ε < 1, and f1 does not vanish on X \ {0}, then there
exist functions g1, g2, g3 : X → (0,∞) such that

g1(x + y) = g2(x)g3(y) for all x, y ∈ X with x ⊥ y,

and ∣∣∣∣fi(x)
gi(x)

− 1
∣∣∣∣ ≤ (1 + ε)ci + 1 and

∣∣∣∣gi(x)
fi(x)

− 1
∣∣∣∣ ≤ (1 + ε)ci + 1

for all x ∈ X and i ∈ {1, 2, 3} with c1 = 15 and c2 = c3 = 16.
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Moreover, if K = R, then there exist μ1, μ2, μ3 ∈ {−1, 1} such that∣∣∣∣μifi(x)
gi(x)

− 1
∣∣∣∣ ≤ (1 + ε)ci − 1 and

∣∣∣∣ gi(x)
μifi(x)

− 1
∣∣∣∣ ≤ (1 + ε)ci − 1

hold for all x ∈ X and i ∈ {1, 2, 3}.
3.3.2. Multiplicative arithmetic functions. In the same manner as additive
functions we may consider multiplicative arithmetic functions, i.e., functions
f : N → R satisfying the conditional functional equation

f(mn) = f(m)f(n) for all m,n ∈ N with m ⊥rp n, (3.20)

and investigate a suitable stability problem.
In the paper by Kochanek and Lewicki [113] the stability problem was

formulated by means of a conditional inequality (cf. Baker et al. [14], Baker
[13])

|f(mn) − f(m)f(n)| ≤ ε for all m,n ∈ N with m ⊥rp n. (3.21)

It is clear that every bounded function f : N → C satisfies (3.21) with
some ε > 0, so for further investigations we may assume that f is unbounded.
Kochanek and Lewicki obtained the following result.

Theorem 3.24. Assume that an unbounded function f : N → C satisfies (3.21).
Then there exists a multiplicative arithmetic function g : N → C such that

|f(n) − g(n)| ≤ ε for all n ∈ N. (3.22)

Moreover, if for every n ∈ N there is a sequence (nk)k∈N ∈ N
N such that

n ⊥rp nk for k ∈ N and limk→∞ |f(nk)| = ∞, then f is a multiplicative
arithmetic function.

The authors showed also that the estimation in (3.22) is sharp.
As we already know the stability problem may be stated as∣∣∣∣ f(mn)

f(m)f(n)
− 1
∣∣∣∣ ≤ ε for all m,n ∈ N with m ⊥rp n, (3.23)

which is more natural (cf. Ger [85] and Ger and Šemrl [88]).
We cite here a result from Kochanek’s paper [111] (one can see some other

stability results in Kochanek’s [109,110]; for the notations see Sect. 3.1.7 and
[111]).

Theorem 3.25. If a function f : N → C\{0} satisfies (3.23) with some ε ∈ [0, 1)
and ∣∣∣∣f(m)

f(n)
− 1
∣∣∣∣ ≤ ρ for all m,n ∈ N with Pm = Pn

and with some ρ ∈ [0,
√

3/2] satisfying

ρ ≤ min{2ε − ε2, 2ε
√

1 − ε2},
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then there exist a strongly multiplicative function6 g : N → C \ {0} and a
constant δ(ε) such that∣∣∣∣f(n)

g(n)
− 1
∣∣∣∣ ≤ δ(ε) and

∣∣∣∣ g(n)
f(n)

− 1
∣∣∣∣ ≤ δ(ε) for all n ∈ N.

3.4. Other results

Obviously, there are many other results concerning stability problems.
Let us just mention one more approach, namely the stability results

obtained in non-Archimedean spaces. The field of p-adic numbers Qp is an
example of a non-Archimedean space (for details see [93,160]). It is of great
interest for physicists, in particular, in problems coming from quantum physics
(see, e.g., [194]).

In [9] (see also [25] and [163, Remark 2] for a more general version), Arriola
and Beyer proved the stability of the Cauchy equation for functions from Qp

into R. In [136], Moslehian and Rassias proved the generalized stability of
the Cauchy and quadratic functional equations for functions from a semigroup
or group, respectively, into a complete non-Archimedean normed space. Najati
and Cho [138] were dealing with a suitable problem for Jensen and Pexiderized
Cauchy equations.

The stability of functional equations postulated for orthogonal vectors was
treated in such spaces by several authors (cf. e.g., Park and Rassias [140]), but
since in this survey we restrict ourselves to the classical functional equations,
now we will not go into details.

To the best of our knowledge, the stability problems for orthogonal addi-
tivity (in its standard form) or orthogonally quadratic equations are open.

4. Orthogonality equation

Let (X, 〈·|·〉) and (Y, 〈·|·〉) be Hilbert spaces over K ∈ {R,C}. A mapping
f : X → Y is called inner product preserving if f is a solution of the so called
orthogonality equation:

〈f(x)|f(y)〉 = 〈x|y〉 for all x, y ∈ X. (4.1)

One can show (see, e.g., Mlak [133, Lemma 2.1.1 and Remark]) the follow-
ing.

Theorem 4.1. A function f satisfies the orthogonality equation if and only if
it is a linear isometry, i.e., ‖f(x) − f(y)‖ = ‖x − y‖ for all x, y ∈ X.

6A function f : N → C is called strongly multiplicative if and only if it satisfies (3.20) and
f(pn) = f(p) for all n ∈ N and p ∈ P.
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It is easy to see that if a function satisfies the orthogonality equation then
it preserves orthogonality, i.e., it satisfies the condition

x ⊥ y ⇒ f(x) ⊥ f(y) for all x, y ∈ X, (4.2)

where orthogonality is given in a standard way by means of the inner product.
In what follows we present the main results and give some bibliographic

data concerning the stability problem. For some more information the reader
should consult Chmieliński’s survey [42] and the references therein.

4.1. Stability of the orthogonality equation

Let (X, 〈·|·〉) and (Y, 〈·|·〉) be Hilbert spaces over K ∈ {R,C}.

Theorem 4.2. (Chmieliński [42]) If f : X → Y satisfies∣∣〈f(x)|f(y)〉 − 〈x|y〉∣∣ ≤ ϕ(x, y) for all x, y ∈ X (4.3)

with a function ϕ : X × X → [0,∞) which satisfies the condition

lim
m+n→∞ cm+nϕ(c−mx, c−ny) = 0 for all x, y ∈ X (4.4)

for some 1 �= c > 0, then there exists a unique mapping I : X → Y , satisfying
the orthogonality equation (4.1) and such that

‖f(x) − I(x)‖ ≤
√

ϕ(x, x) for all x ∈ X.

This theorem is a generalization of another result obtained by Chmieliński
2 years earlier. Now we can formulate it as a corollary.

Corollary 4.1. (Chmieliński [38]) Let ε > 0 and p ∈ R \ {1} be fixed. If a
function f : X → Y satisfies∣∣〈f(x)|f(y)〉 − 〈x|y〉∣∣ ≤ ε‖x‖p‖y‖p for all x, y ∈ Xp,

where Xp = X if p ≥ 0 (with the assumption 00 := 1), and Xp = X \ {0} if
p < 0, then there exists a unique function I : X → Y satisfying (4.1) and such
that

‖f(x) − I(x)‖ ≤ √
ε‖x‖p for all x ∈ Xp.

The next result is a singular case where p = 1. However, it is proved only
for a finite dimensional domain.

Theorem 4.3. (Chmieliński [41]) Let X be finite dimensional. If f : X → Y
satisfies ∣∣〈f(x)|f(y)〉 − 〈x|y〉∣∣ ≤ ε‖x‖‖y‖ for all x, y ∈ X,

then there exists a linear isometry I : X → Y such that

‖f(x) − I(x)‖ ≤ δ(ε)‖x‖ for all x ∈ X

with some continuous mapping δ : [0, 1) → [0,∞) satisfying limε→0+ δ(ε) = 0.
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Problem 4.1. Does the assertion of Theorem 4.3 remain valid in the case X is
infinite dimensional?

Remark 4.1. (a) If X = Y = R
n and p ∈ R \ {1}, then f = I (hyperstability

phenomenon) [38]. (b) If X = Y = R
n and p = 1, then we have stability, but

there is no hyperstability effect [41].

The stability/hyperstability effect concerning the dimension can be
explained via results of Badora and Chmieliński [11] about the decomposi-
tion of solutions of (4.3).

Theorem 4.4. Let (X, 〈·|·〉) and (Y, 〈·|·〉) be Hilbert spaces and let f : X → Y
satisfy (4.3) with ϕ satisfying (4.4). Then there exists a closed linear subspace
H of Y such that

f(x) = PHf(x) + PH⊥f(x) for all x ∈ X,

‖PH⊥f(x)‖ ≤
√

ϕ(x, x) for all x ∈ X

and

〈PHf(x)|PHf(y)〉 = 〈x|y〉 for all x, y ∈ X,

where PH , PH⊥ denote the orthogonal projections from Y onto H and H⊥,
respectively.

Conversely, if f : X → Y is given and there exists a closed linear subspace
H of Y such that the above three conditions hold, then∣∣〈f(x)|f(y)〉 − 〈x|y〉∣∣ ≤ ‖PH⊥f(x)‖ ‖PH⊥f(y)‖ for all x, y ∈ X.

The stability result is included in the above theorem. On the other hand,
since the subspace H is isomorphic to X, in the case dimX = dimY < ∞, we
get H = Y and hence, the hyperstability.

A similar stability problem can be also stated in Hilbert modules (cf.
Chmieliński and Moslehian [46]).

4.2. Orthogonality equation almost everywhere

For the orthogonality equation (4.1) we may study its “almost everywhere”
version (in the sense of ideals). Namely, we consider

〈f(x)|f(y)〉 = 〈x|y〉 for all (x, y) ∈ X2 \ M

or

〈f(x)|f(y)〉 = 〈x|y〉 for all x, y ∈ X \ U,

where M and U are in some sense small in X2 and X, respectively.
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In the papers by Chmieliński and Rätz [47] and Chmieliński and Ger [45],
the authors showed (sometimes under some additional assumptions) the exis-
tence of a unique solution of the orthogonality equation which is equal to f
almost everywhere on X.

In [37], Chmieliński proved the stability of the orthogonality equation pos-
tulated almost everywhere.

5. Preserving orthogonality

5.1. Exact orthogonality preserving mappings

As it was already mentioned, we say that f : X → Y (exactly) preserves orthog-
onality if and only if it satisfies (4.2).

Remark 5.1. Such mappings can be very irregular, far from being continuous
or linear. For that reason we restrict ourselves to linear mappings only.

We start our considerations with inner product spaces and with the stan-
dard orthogonality defined by means of the inner product.

Theorem 5.1. (Chmieliński [39]) Let (X, 〈·|·〉), (Y, 〈·|·〉) be (real or complex)
inner product spaces. For a nonzero linear mapping f : X → Y the following
conditions are equivalent with some γ > 0:

(i) f preserves orthogonality;
(ii) ‖f(x)‖ = γ‖x‖ for all x ∈ X;
(iii) 〈f(x)|f(y)〉 = γ2〈x|y〉 for all x, y ∈ X.

We continue with presenting results for normed spaces. For the orthogo-
nality relation in the sense of Birkhoff the first result comes from Koldobsky
[117]. He showed that also in the case of a real normed space (X, ‖ · ‖) a linear
mapping f : X → X preserving orthogonality has to be a similarity, i.e., there
exists a positive constant γ such that

‖f(x)‖ = γ‖x‖ for all x ∈ X. (5.1)

Clearly, for a linear mapping f , we have then γ = ‖f‖.
The respective result for both real and complex cases was given by Blanco

and Turnšek in [27].

Theorem 5.2. Let (X, ‖ · ‖) and (Y, ‖ · ‖) be (real or complex) normed linear
spaces and let f : X → Y be a linear operator. Then f preserves the Birkhoff
orthogonality if and only if f is a similarity.

Six years later, using the connections between the Birkhoff orthogonality
and norm derivatives, Ionică [101] gave an alternative proof of the above results
in the case of different real normed spaces.

The result concerning James orthogonality is almost immediate.
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Theorem 5.3. (Chmieliński and Wójcik [48]) Let (X, ‖ · ‖) and (Y, ‖ · ‖) be
normed linear spaces and let f : X → Y be a linear operator. The following
conditions are equivalent:
(a) there exists γ > 0 such that ‖f(x)‖ = γ‖x‖ for all x ∈ X;
(b) x ⊥J y ⇒ f(x) ⊥J f(y) for all x, y ∈ X;
(c) x ⊥J y ⇔ f(x) ⊥J f(y) for all x, y ∈ X.

Koehler and Rosenthal [116] have shown that a linear operator from a
normed space into itself is an isometry if and only if it preserves some semi-
inner product. We present here a slightly more general result.

Theorem 5.4. (Chmieliński [43]) Let (X, ‖ · ‖) and (Y, ‖ · ‖) be normed linear
spaces and let f : X → Y be a linear operator. Then f is a similarity (i.e.,
(5.1) is satisfied with some γ > 0) if and only if there exist semi-inner products
[·|·]X and [·|·]Y in X and Y , respectively, such that

[f(x)|f(y)]Y = γ2[x|y]X for all x, y ∈ X.

Moreover, if X = Y (with the same norm), then the assertion holds with the
same semi-inner product.

The next theorem gives results concerning the case of ρ+-, ρ−- and ρ-
orthogonalities (cf., Chmieliński and Wójcik [49, Theorem 5] and Wójcik [195,
Theorem 4.3]).

Theorem 5.5. Let (X, ‖·‖) and (Y, ‖·‖) be normed linear spaces and let f : X →
Y be a nonzero linear operator. Then the following conditions are equivalent
with some γ > 0:
(a) f preserves ρ+-orthogonality;
(b) f preserves ρ−-orthogonality;
(c) f preserves ρ-orthogonality;
(d) ‖f(x)‖ = γ‖x‖ for all x ∈ X;
(e) ρ′

+(f(x), f(y)) = γ2ρ′
+(x, y) for all x, y ∈ X;

(f) ρ′
−(f(x), f(y)) = γ2ρ′

−(x, y) for all x, y ∈ X;
(g) ρ′(f(x), f(y)) = γ2ρ′(x, y) for all x, y ∈ X.

Ilǐsević and Turnšek [100] studied orthogonality preserving mappings in
the setting of inner product C∗-modules. In particular, if X and Y are inner
product C∗-modules over the C∗-algebra A, any scalar multiple of an A-linear
isometry is an A-linear orthogonality preserving mapping. In particular, we
have [100, Proposition 2.3].

Theorem 5.6. Let A be a C∗-algebra and let (X, 〈·|·〉), (Y, 〈·|·〉) be inner product
A-modules. For a mapping f : X → Y and some γ > 0 the following assertions
are equivalent:

(i) f is A-linear and ‖f(x)‖ = γ‖x‖ for all x ∈ X;
(ii) 〈f(x)|f(y)〉 = γ2〈x|y〉 for all x, y ∈ X.
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Furthermore, each of these assertions implies:
(iii) f is A-linear and orthogonality preserving.
If X = Y then (i) and (ii) are also equivalent to
(iv) f is A-linear and there exists a semi-inner product [·|·] : X × X → C

satisfying [f(x)|f(y)] = γ2[x|y] for all x, y ∈ X.

As it is shown in [100, Example 2.4], the converse does not hold in general,
that is (iii) is not equivalent to (i) and (ii) in general. It holds, however, if A
contains K(H) (the C∗-algebra of all compact operators on a Hilbert space H)
(see [100, Theorem 3.1]).

5.2. Mappings which approximately preserve orthogonality

Let ε ∈ [0, 1). We say that f : X → Y ε-approximately preserves orthogonality
if and only if

x ⊥ y ⇒ f(x) ⊥ε f(y) for all x, y ∈ X, (5.2)

and we say that f approximately preserves orthogonality if it ε-approximately
preserves orthogonality with some ε ∈ [0, 1).

Further, we say that a linear mapping f : X → Y between normed spaces is
an approximate isometry if there exists ε > 0 (we speak then of an ε-isometry)
such that

∣∣‖f(x)‖ − ‖x‖∣∣ ≤ ε‖x‖ for all x ∈ X. A more general definition is
given by Moǰskerc and Turnšek [134]: f : X → Y is a general approximate
isometry if and only if there exist mappings δ1, δ2 : [0,∞) → [0,∞) with the
property δ1(ε), δ2(ε) → 0 as ε → 0 and such that

(1 − δ1(ε))‖x‖ ≤ ‖f(x)‖ ≤ (1 + δ2(ε))‖x‖ for all x ∈ X.

Finally, we say that f is a (general) approximate similarity if it is a scalar
multiple of a (general) approximate isometry. More exactly, considering the
known approximations, we say that a linear and continuous mapping f is an
η-similarity if

(1 − η)‖f‖ ‖x‖ ≤ ‖f(x)‖ ≤ ‖f‖ ‖x‖ for all x ∈ X.

As usual, first we present results for inner product spaces (Chmieliński [39,
Theorem 2]; see also Turnšek [189, Remark 2.1]).

Theorem 5.7. Let (X, 〈·|·〉), (Y, 〈·|·〉) be inner product spaces and f : X → Y
be a linear mapping satisfying (5.2) with some ε ∈ [0, 1). Then f is injective,
continuous and, with some γ > 0, f satisfies the inequality
∣∣〈f(x)|f(y)〉 − γ〈x|y〉∣∣ ≤ 4ε

1 + ε
min{γ‖x‖‖y‖, ‖f(x)‖‖f(y)‖} for all x, y ∈ X.

Conversely, if f : X → Y satisfies∣∣〈f(x)|f(y)〉 − γ〈x|y〉∣∣ ≤ ε min{γ‖x‖‖y‖, ‖f(x)‖‖f(y)‖} for all x, y ∈ X
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with some ε > 0 and with some γ > 0, then f is a quasi-linear mapping7, which
approximately preserves orthogonality.

As a corollary we derive the fact that each linear mapping which is an
ε-approximately preserving orthogonality, is a continuous (1−

√
1−ε
1+ε )-similarity

(see Chmieliński [39], Turnšek [189]). The converse is also true: each contin-
uous ε-similarity is a mapping that ε-approximately preserves orthogonality
(Wójcik [196,197]).

Kong and Cao [119] were studying a more general case, namely
(δ, ε)-approximately orthogonality preserving linear mappings, i.e., mappings
satisfying

x ⊥δ y ⇒ f(x) ⊥ε f(y) for all x, y ∈ X (5.3)

with some δ, ε ∈ [0, 1). They proved that such mappings are bounded. More-
over, they gave a sufficient condition for a linear mapping to be (δ, ε)-approxi-
mately orthogonality preserving. We cite here two theorems from [119].

Theorem 5.8. Let (X, 〈·|·〉), (Y, 〈·|·〉) be Hilbert spaces and g : X → Y be a
linear orthogonality preserving mapping. If there is a linear mapping f : X →
Y such that

‖f(x) − g(x)‖ ≤ η‖g(x)‖ for all x ∈ X,

with some η ∈ [0, 1
4 ), then for every δ ∈ [0, 1 − 4η), the function f is (δ, ε)-

approximately orthogonality preserving, where ε = η(η+2)+δ
(1−η)2 .

Theorem 5.9. Let (X, 〈·|·〉), (Y, 〈·|·〉) be Hilbert spaces, δ, ε ∈ [0, 1) and let
f : X → Y be a linear (δ, ε)-approximately orthogonality preserving mapping.
Then f is continuous and there exists λ0 ∈ C such that

μ‖f‖ ‖x‖ ≤ ‖f(x)‖ ≤ ‖f‖ ‖x‖ for all x ∈ X, (5.4)

where μ = |λ0|
δ+1

√
1−ε
1+ε > 0.

Wójcik showed (see [196,197]) that if f is a linear (δ, ε)-approximately
orthogonality preserving mapping between two complex Hilbert spaces, then
δ ≤ ε (which is not derivable from [119]), f is continuous, injective and satisfies

(5.4) with μ =
√

1−ε
1+ε

√
1+δ
1−δ .

The following results already concern normed linear spaces. We start with
results concerning James orthogonality.

7A function f is called quasi-linear if it satisfies with some δ, η ≥ 0 the conditions ‖f(x +
y)− f(x)− f(y)‖ ≤ δ(‖x‖+ ‖y‖) and ‖f(λx)−λf(x)‖ ≤ η|λ|‖x‖ for all x, y ∈ X and λ ∈ K.
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Theorem 5.10. (Chmieliński and Wójcik [48, Theorem 3.2]) Let (X, ‖ · ‖),
(Y, ‖ · ‖) be real normed linear spaces, ε ∈ [0, 1) and let f : X → Y be a
nontrivial linear mapping satisfying

x ⊥J y ⇒ f(x) ε⊥J f(y) for all x, y ∈ X. (5.5)

Then f is injective, continuous and satisfies

1 − ε

1 + ε
‖f‖‖x‖ ≤ ‖f(x)‖ ≤ 1 + ε

1 − ε
[f ]‖x‖ for all x ∈ X, (5.6)

where [f ] = inf{‖f(x)‖ : ‖x‖ = 1} = sup{M ≥ 0 : ‖f(x)‖ ≥ M‖x‖, x ∈ X},
or equivalently,

1 − ε

1 + ε
γ‖x‖ ≤ ‖f(x)‖ ≤ 1 + ε

1 − ε
γ‖x‖ for all x ∈ X, γ ∈ [[f ], ‖f‖]. (5.7)

Conversely, if a linear bounded mapping f : X → Y satisfies (5.6) (or
(5.7)), then it satisfies (5.5).

Obviously, (5.6) holds for a linear mapping f : X → Y satisfying a stronger
condition than (5.5), i.e., the condition x ⊥J y ⇒ f(x) ⊥ε

J f(y) for all
x, y ∈ X.

As a corollary, we derive that linear approximately James orthogonality
preserving mappings are approximate similarities. And also each ε-isometry
ε-approximately preserves James orthogonality with respect to the relation
ε⊥J .

Problem 5.1. Is it true that each ε-isometry (or more generally, ε-similarity)
ε-approximately preserves James orthogonality with respect to the relation
⊥ε

J?

Some further properties of functions satisfying (5.5) are collected in
Chmieliński and Wójcik [48, Theorem 3.6].

Moǰskerc and Turnšek [134] were dealing with mappings approximately
preserving Birkhoff orthogonality with respect to the relation ⊥ε

B . They showed
that such mappings have to be approximate similarities. Namely, they proved
the following.

Theorem 5.11. Let (X, ‖ · ‖), (Y, ‖ · ‖) be normed linear spaces, ε ∈ [0, 1
16 ) and

let f : X → Y be a linear mapping satisfying

x ⊥B y ⇒ f(x) ⊥ε
B f(y) for all x, y ∈ X. (5.8)

Then f is continuous and

(1 − 16ε)‖f‖‖x‖ ≤ ‖f(x)‖ ≤ ‖f‖‖x‖ for all x ∈ X.

In the case of real spaces the constant (1 − 16ε) in the above theorem can
be replaced by (1 − 8ε) with ε ∈ [0, 1

8 ).
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However, in contrast to inner product spaces or normed spaces with James
orthogonality, the converse theorem is not true, which was proved by Wójcik
[196] (see also Moǰskerc and Turnšek [134]).

Surprisingly, the situation looks different in the case of the relation ε⊥B

defined by Dragomir in [58]. Here we know that an approximate similarity is
an approximately Birkhoff orthogonality preserving mapping.

Theorem 5.12. (Moǰskerc and Turnšek [134, Proposition 3.6]) Let (X, ‖ · ‖),
(Y, ‖ · ‖) be normed linear spaces and f : X → Y be a scalar multiple of a
general linear approximate isometry. Then

x ⊥B y ⇒ f(x) δ(ε)⊥B f(y) for all x, y ∈ X,

where δ(ε) = δ1(ε)+δ2(ε)
1+δ2(ε)

.

However, we do not know the complete answer for the question about the
converse. It is known only that an approximately Birkhoff orthogonality pre-
serving mapping is bounded (Moǰskerc and Turnšek [134]). Moreover, if X
and Y are normed spaces and Y is uniformly smooth, then a linear mapping
satisfying

x ⊥B y ⇒ f(x) ε⊥B f(y) for all x, y ∈ X

is a scalar multiple of an approximate isometry ([134]).
In his doctorial dissertation [196], Wójcik obtained the same assertion for

some other examples of spaces. The general situation remains then open, so
we may state the next

Problem 5.2. Are approximately Birkhoff orthogonality preserving mappings
in the sense of relation ε⊥B approximate similarities?

Chmieliński and Wójcik [50] studied approximately ρ-orthogonality pre-
serving mappings. They proved a property that for arbitrary normed spaces X
and Y , if a linear mapping f : X → Y approximately preserves ρ+-orthogonality
or approximately preserves ρ−-orthogonality then it approximately preserves
Birkhoff orthogonality with respect to the relation ⊥ε

B . Later, Wójcik [196]
showed that, in fact, all four properties: approximate ρ+ (ρ−, ρ, Birkhoff)-
orthogonality preservation, are equivalent. These results, together with the
result of Moǰskerc and Turnšek concerning Birkhoff orthogonality give

Theorem 5.13. (Chmieliński and Wójcik [50]; Wójcik [196]) Let (X, ‖ · ‖),
(Y, ‖ · ‖) be real normed linear spaces, ε ∈ [0, 1

8 ) and let f : X → Y be a linear
mapping satisfying one of the following conditions:

x ⊥ρ+ y ⇒ f(x) ⊥ε
ρ+

f(y) for all x, y ∈ X,

x ⊥ρ− y ⇒ f(x) ⊥ε
ρ− f(y) for all x, y ∈ X,

x ⊥ρ y ⇒ f(x) ⊥ε
ρ f(y) for all x, y ∈ X.



266 J. Sikorska AEM

Then

(1 − 8ε)‖f‖ ‖x‖ ≤ ‖f(x)‖ ≤ ‖f‖ ‖x‖ for all x ∈ X.

We proceed to the investigations concerning Roberts orthogonality. Sup-
pose that (X, ‖ ·‖) and (Y, ‖ ·‖) are real normed spaces. Analogously as before,
we will say that a linear mapping f : X → Y (δ, η)-approximately preserves
Roberts orthogonality if and only if

x δ⊥R y ⇒ f(x) η⊥R f(y) for all x, y ∈ X.

Zamani and Moslehian in [201] gave several sufficient conditions for a linear
mapping to be (δ, η)-approximately preserving Roberts orthogonality. We cite
here one of the results.

Theorem 5.14. (Zamani and Moslehian [201, Theorem 3.1]) Let f : X → Y be
a scalar multiple of a general linear approximate isometry, i.e., f = λU and
(1 − ϕ1(ε))‖x‖ ≤ ‖Ux‖ ≤ (1 + ϕ2(ε))‖x‖, for all x ∈ X, where ϕ1(ε) → 0 and
ϕ2(ε) → 0 as ε → 0. Then f is a (δ, η)-approximately Roberts orthogonality
preserving mapping for any δ and with η = 2δ+(1−δ)ϕ1(ε)+(1+δ)ϕ2(ε)

2−(1−δ)ϕ1(ε)+(1+δ)ϕ2(ε)
.

So, it means that a scalar multiple of a general linear approximate isometry
is a (δ, ε)-approximately Roberts orthogonality preserving mapping.

The case of C∗-modules was carried out by Ilǐsević and Turnšek [100].
Namely, they proved the following [100, Theorem 3.7].

Theorem 5.15. Let A be a C∗-algebra such that K(H) ⊆ A ⊆ B(H), where
K(H), B(H) denote the C∗-algebra of all compact operators and the C∗-algebra
of all bounded operators on a Hilbert space H, respectively, and let X, Y be
inner product A-modules. Let f : X → Y be an A-linear mapping satisfying
with some ε ∈ [0, 1) the condition

〈x|y〉 = 0 ⇒ ∥∥〈f(x)|f(y)〉∥∥ ≤ ε‖f(x)‖ ‖f(y)‖ for all x, y ∈ X.

Then f is bounded and
∥∥〈f(x)|f(y)〉 − ‖f‖2〈x|y〉∥∥ ≤ 4ε

1 + ε
‖f‖2‖x‖ ‖y‖ for all x, y ∈ X.

5.3. Stability of the orthogonality preserving property

Coming to a stability problem again, now we answer the question: given a
linear approximately orthogonality preserving mapping f , does there exist a
linear orthogonality preserving mapping close (in a sense) to f? From the last
two sections we already know that in the considered cases such mappings are
continuous.

The first (positive) answer was given in the case of finite dimensional inner
product spaces by Chmieliński [41]. Using another approach in the proof, based
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on operator theory in Hilbert spaces, Turnšek got rid of that assumption and
obtained the following result.

Theorem 5.16. (Chmieliński [41], Turnšek [189]) Let (X, 〈·|·〉), (Y, 〈·|·〉) be
Hilbert spaces. For a linear, ε-approximately orthogonality preserving mapping
f : X → Y there exists a linear orthogonality preserving operator g : X → Y
such that

‖f − g‖ ≤
(

1 −
√

1 − ε

1 + ε

)
min{‖f‖, ‖g‖}.

Problem 5.3. Is the completeness of X necessary? That is, is the above result
true for non-complete spaces?

Considering now Hilbert modules, we have the following result (for the
notation see Theorerm 5.15).

Theorem 5.17. (Ilǐsević and Turnšek [100, Theorem 4.4]) Let A = K(H) and
let X, Y be Hilbert A-modules. If f : X → Y is an A-linear, ε-approximately
orthogonality preserving mapping with some ε ∈ [0, 1), then there exists an
A-linear isometry I : X → Y such that

∥∥f − ‖f‖I
∥∥ ≤

(
1 −

√
1 − ε

1 + ε

)
‖f‖.

Problem 5.4. (Ilǐsević and Turnšek [100]) Is the above result valid for an arbi-
trary C∗-algebra A such that K(H) ⊂ A ⊂ B(H)?

Before presenting results concerning the stability of the orthogonality pre-
serving property in normed spaces, we give some necessary facts on the stability
of isometries. That problem is formulated as follows:

For a pair (X,Y ) of normed spaces, does there exist a function δ : [0, 1) →
[0,∞) satisfying limε→0 δ(ε) = 0 and such that for any linear ε-isometry
f : X → Y (with ε ∈ [0, 1)) there exists a linear isometry I : X → Y such
that ‖f − I‖ ≤ δ(ε)?

Denote by A the class of all pairs of normed spaces for which the above
problem has an affirmative answer (for some details see, e.g., Ding [57] or
Protasov [145]).

Let (X, ‖ · ‖), (Y, ‖ · ‖) be (real or complex) normed spaces, f : X → Y be
linear and ε ∈ [0, 1). We will formulate the stability results for the property of
orthogonality preservation for various notions of orthogonality.

Theorem 5.18. (Chmieliński, Wójcik [48, Theorem 5.2]) Let (X,Y ) ∈ A with
a suitable mapping δ : [0, 1) → [0,∞) satisfying limε→0 δ(ε) = 0. Let f : X →
Y be a linear mapping satisfying (5.5). Then there exists a linear mapping
g : X → Y preserving James orthogonality such that

‖f − g‖ ≤ δ(ε)min{‖f‖, ‖g‖}.
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In fact, also the converse can be proved: if for real normed spaces X and Y ,
the James orthogonality preserving property is stable, then (X,Y ) ∈ A (see
Chmieliński [44], Wójcik [196]). So, the two properties are equivalent.

A suitable example of spaces for which the stability of the above property
cannot be proved is given by Chmieliński [44] (see also Protasov [145]).

From Theorem 5.18, it follows that the property of orthogonality preserva-
tion is also stable if we consider the assumption with respect to the relation
⊥ε

J .
In the case of Birkhoff orthogonality an answer to the stability problem

was given by Moǰskerc and Turnšek [134, Theorem 4.1].

Theorem 5.19. Assume that (X,Y ) ∈ A and let f : X → Y be a linear mapping
satisfying (5.8). Then there exists a linear mapping g : X → Y preserving the
Birkhoff orthogonality and such that

‖f − g‖ ≤ δ(ε)‖f‖ (5.9)

with some function δ (depending only on X and Y ) satisfying limε→0+ δ(ε) =
0.

Problem 5.5. Is the converse true, that is, for (real) normed spaces X and Y , if
the Birkhoff orthogonality preserving property is stable (with approximation
given by the relation ⊥ε

B), does it necessarily follow that (X,Y ) ∈ A?

In the case of the approximation given by the relation ε⊥B , if X and Y are
normed spaces such that the stability of the orthogonality preserving property
holds, then (X,Y ) ∈ A (Moǰskerc and Turnšek [134, Proposition 4.2]).

In case Y is uniformly smooth, the two kinds of stability properties and
the property (X,Y ) ∈ A are equivalent (Moǰskerc and Turnšek [134, Theorem
4.3]).

If X and Y are finite dimensional normed spaces and f : X → Y approxi-
mately preserves orthogonality in the sense of ε⊥B , then it is close to a multiple
of a linear isometry, i.e., it satisfies (5.9) (Moǰskerc and Turnšek [134, Propo-
sition 4.4]).

In [196], Wójcik gave some other conditions imposed on the spaces X and Y
which imply that the Birkhoff orthogonality preserving property is stable (with
approximation given by the relation ε⊥B) as well as he showed an example of
spaces for which the Birkhoff orthogonality preserving property is not stable.

Problem 5.6. Describe the set of all pairs (X,Y ), for which the Birkhoff orthog-
onality preserving property (in the sense of ε⊥B) is stable.

Similarly as above, the stability problem of the property of preserving the ρ
(ρ+, ρ−)-orthogonality is connected with the property of approximate orthog-
onality preservation as well as with the stability of isometries for given spaces.
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Theorem 5.20. (Wójcik [196]) Assume that (X, ‖ · ‖) and (Y, ‖ · ‖) are normed
spaces such that (X,Y ) ∈ A and let f : X → Y be a linear mapping which
approximately preserves ρ-orthogonality, that is, satisfies the condition

x ⊥ρ y ⇒ f(x) ⊥ε
ρ f(y) for all x, y ∈ X.

Then there exists a linear mapping g : X → Y preserving ρ-orthogonality and
such that (5.9) holds with some function δ (depending only on X and Y )
satisfying limε→0+ δ(ε) = 0.

Since, by Theorem 5.5, the properties of preserving ρ-, ρ+- and ρ−-
orthogonality are equivalent as well as the corresponding properties of approx-
imate preservations, the above theorem can be stated in the same form also
for ρ+- and ρ−-orthogonality.
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[2] Alonso, J., Beńıtez, C.: Orthogonality in normed linear spaces: a survey. Part I: main
properties. Extracta Math. 3, 1–15 (1988)
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[66] Erdős, P.: Problem P310. Colloq. Math. 7, 311 (1960)
[67] Fechner, W.: On functions with the Cauchy difference bounded by a functional.

III. Abh. Math. Sem. Univ. Hamburg 76, 57–62 (2006)
[68] Fechner, W., Sikorska, J.: Sandwich theorems for orthogonally additive func-

tions. Inequal. Appl. Int. Ser. Numer. Math. 157, 269–281 (2008)
[69] Fechner, W., Sikorska, J.: On the stability of orthogonal additivity. Bull. Polish Acad.

Sci. Math. 58, 23–30 (2010)
[70] Fochi, M.: Alcune equazioni funzionali condizionate sui vettori ortogonali. Rend.

Sem. Mat. Univ. Politec. Torino 44, 397–406 (1986)
[71] Fochi, M.: Functional equations in A-orthogonal vectors. Aequations Math. 38, 28–

40 (1989)
[72] Fochi, M.: D’Alembert’s functional equation on restricted domains. Aequationes

Math. 52, 246–253 (1996)
[73] Fochi, M.: Characterization of special classes of solutions for some functional equa-

tions on orthogonal vectors. Aequationes Math. 59, 150–159 (2000)
[74] Fochi, M.: An alternative functional equation on restricted domain. Aequationes

Math. 70, 201–212 (2005)
[75] Fochi, M.: An alternative-conditional functional equation and the orthogonally addi-

tive functionals. Aequationes Math. 78, 309–320 (2009)
[76] Fochi, M.: General solutions of two quadratic functional equations of Pexider type

on orthogonal vectors. Abstr. Appl. Anal. (2012) Art. ID 675810
[77] Forti, G.L.: Hyers–Ulam stability of functional equations in several variables. Aequa-

tiones Math. 50, 143–190 (1995)
[78] Friedman, N., Katz, M.: Additive functional in Lp spaces. Can. J. Math. 18, 1264–

1271 (1966)
[79] Friedman, N., Katz, M.: A representation theorem for additive functionals. Arch.

Ration. Mech. Anal. 21, 49–57 (1966)
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[144] Pólya, G., Szegő, G.: Problems and Theorems in Analysis. I. Springer, New
York (1972)

[145] Protasov, V.Yu.: On stability of isometries in Banach spaces, Chapter 22. In: Func-
tional Equations in Mathematical Analysis. Springer Optimization and Its Applica-
tions, vol. 52, pp. 273–285. Springer, Berlin (2012)

[146] Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am.
Math. Soc. 72, 297–300 (1978)

[147] Rätz, J.: On orthogonally additive mappings. In: Proceedings of the Eighteenth Inter-
national Symposium on Functional Equations, University of Waterloo, pp. 22–23
(1980)

[148] Rätz, J.: On the conditional Cauchy functional equation of orthogonal additiv-
ity. Rend. Sem. Mat. Fis. Milano 53, 227–228 (1983)

[149] Rätz, J.: On orthogonally additive mappings. Aequationes Math. 28, 35–49 (1985)
[150] Rätz, J.: On orthogonally additive mappings. II. Publ. Math. Debrecen 35, 241–

249 (1988)
[151] Rätz, J.: On orthogonally additive mappings. III. Abh. Math. Sem. Univ. Ham-

burg 59, 23–33 (1989)
[152] Rätz, J.: Orthogonally additive mappings on free inner product Z-modules. Publ.

Math. Debrecen 51, 97–110 (1997)
[153] Rätz, J.: Characterization of inner product spaces by means of orthogonally additive

mappings. Aequationes Math. 58, 111–117 (1999)
[154] Rätz, J.: On a problem of J. Sikorska. In: Report of Meeting. The Thirty-seventh

International Symposium on Functional Equations, May 16–23, 1999, Huntington.
Aequationes Math., vol. 60, p. 184 (2000)

[155] Rätz, J.: A remark on a conditional cocycle equation. Dedicated to Professor Zenon
Moszner on the occasion of his seventieth birthday. Rocznik Nauk. -Dydakt. Prace
Mat. 17, 233–238 (2000)

[156] Rätz, J.: Cauchy functional equation problems concerning orthogonality. Aequationes
Math. 62, 1–10 (2001)
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[197] Wójcik, P.: On certain basis connected with operator and its applications (submitted)
[198] Wyrobek, W.: Orthogonally additive functions modulo a discrete subgroup. Aequa-

tiones Math. 78, 63–69 (2009)
[199] Wyrobek, W.: Orthogonally Pexider functions modulo a discrete subgroup. Ann.

Math. Sil. 26, 93–100 (2012)
[200] Yang, D.: Orthogonality spaces and orthogonally additive mappings. Acta Math.

Hungar. 113, 269–280 (2006)
[201] Zamani, A., Moslehian, M.S.: Approximate Roberts orthogonality. Aequationes

Math. (2013). doi:10.1007/s00010-013-0233-7

Justyna Sikorska
Institute of Mathematics
University of Silesia
Bankowa 14
40-007 Katowice, Poland
e-mail: justyna.sikorska@us.edu.pl

Received: March 29, 2014

Revised: June 16, 2014

http://dx.doi.org/10.1007/s00010-014-0261-y
http://dx.doi.org/10.1007/s00010-013-0233-7

	Orthogonalities and functional equations
	Abstract
	Introduction
	1. Orthogonalities
	1.1. Various definitions of the orthogonality relation
	1.1.1. Birkhoff orthogonality
	1.1.2. Isosceles orthogonality
	1.1.3. Pythagorean orthogonality
	1.1.4. Norm derivatives orthogonality
	1.1.5. Roberts orthogonality
	1.1.6. Semi-inner product orthogonality
	1.1.7. Diminnie orthogonality
	1.1.8. Orthogonality space
	1.1.9. Orthogonality defined via a difference operator
	1.1.10. C*-algebras
	1.1.11. Orthogonalities on groups

	1.2. Approximate orthogonalities

	2. Functional equations postulated for orthogonal vectors
	2.1. Cauchy functional equation
	2.1.1. Solutions
	2.1.2. Applications

	2.2. Jensen functional equation
	2.3. Quadratic functional equation
	2.4. Exponential functional equation
	2.5. Other classical equations
	2.5.1. D'Alembert equation
	2.5.2. Alternative Cauchy equation
	2.5.3. Cocycle equation

	2.6. Arithmetic functions

	3. Stability of functional equations postulated for orthogonal vectors
	3.1. Cauchy functional equation
	3.1.1. Hyers--Ulam stability
	3.1.2. Generalized stability
	3.1.3. Some applications
	3.1.4. Functional congruences
	3.1.5. Orthogonal additivity almost everywhere
	3.1.6. Nearly additive set functions
	3.1.7. Arithmetic functions

	3.2. Quadratic functional equation
	3.3. Exponential functional equation
	3.3.1. Formulation of the stability problem
	3.3.2. Multiplicative arithmetic functions

	3.4. Other results

	4. Orthogonality equation
	4.1. Stability of the orthogonality equation
	4.2. Orthogonality equation almost everywhere

	5. Preserving orthogonality
	5.1. Exact orthogonality preserving mappings
	5.2. Mappings which approximately preserve orthogonality
	5.3. Stability of the orthogonality preserving property

	Acknowledgements
	References

	ADP3F6A.tmp
	Citation style: Sikorska Justyna.(2015). Orthogonalities and functional equations. "Aequationes mathematicae" (Vol. 89, iss. 2 (2015), s. 215-277), doi 10.1007/s00010-014-0288-0




