9 research outputs found

    Thermal and chemical characteristics of hot water springs in the northern part of the Limpopo Province, South Africa

    Get PDF
    In many countries thermal springs are utilised for a variety of purposes, such as the generation of power, direct space heating, industrial processes, aquaculture and many more. The optimal use of a thermal spring is largely dependent upon its physical and chemical characteristics. This article focuses on the thermal and chemical features of 8 thermal springs located in the northern part of the Limpopo Province, South Africa. Field data and water samples were collected from Evangelina, Tshipise, Sagole, Môreson, Siloam, Mphephu, Minwamadi and Die Eiland for analysis of physical and chemical parameters. The temperatures at source vary from 30°C to 67.5°C. The springs are associated with faults and impermeable dykes and are assumed to be of meteoric origin. The mineral composition of the thermal waters reflects the geological formations found at the depth of origin. None of the spring waters are fit for human consumption since they contain unacceptably high levels of bromide ions. Six springs do not conform to domestic water quality guidelines with respect to fluoride levels. Unacceptably high values of mercury were detected at Môreson and Die Eiland. Spring water at Evangelina is contaminated with selenium and arsenic. It is important to keep such limitations in mind when determining the ultimate use of the thermal springs.Keywords: thermal springs, South Africa, macro and micro-elements, geological control

    Association between physical and geochemical characteristics of thermal springs and algal diversity in Limpopo Province, South Africa

    Get PDF
    Algal species commonly occur in thermophilic environments and appear to have very wide geographical distributions. Presence of algal species is strongly influenced by temperature, pH and mineral content of thermal waters. No research has previously been documented on the algal diversity in South African thermal springs. This paper describes the algal distribution in 6 thermal springs in Limpopo Province, South Africa, and attempts to link this to the physical and geochemicalproperties of the springs. Water samples were collected from Mphephu, Siloam, Tshipise, Sagole, Eiland and Soutini thermal springs and algae identified. Temperature, pH and TDS were measured on site and water samples analysed for macro- and trace-elements. Cyanophyta was the algal group most often present, followed by Bacillariophyta, Chlorophyta, Euglenophyta and Dinophyta. Some of the algae were present in waters with pH ranging from 7.1–9.7 and temperatures ranging from 40–67°C. Others (the cyanobacteria and green algae: Nodularia, Schizothrix, Anacystis, Coelastrum, Chlorella and Spirogyra) only occurred in high temperature (60+°C) and pH>9 waters, while a number of diatoms (Synedra, Aulacoseira, Nitzschia, Cyclotella, Gyrosigma, Craticula) occurred exclusively at temperatures <45°C and pH values <8. Algae were also present in waters with fluoride values exceeding that which is considered safe for human consumption as well as in waters relatively rich in uranium, rubidium, vanadium and manganese. It was clear that the occurrence of algae coincided with specific geological formations. These algae could act as indicator species of geology and heavy metals.Keywords: thermal springs, Limpopo Province, algae, diversity, geochemica

    Predicting In Vivo Anti-Hepatofibrotic Drug Efficacy Based on In Vitro High-Content Analysis

    Get PDF
    Background/Aims Many anti-fibrotic drugs with high in vitro efficacies fail to produce significant effects in vivo. The aim of this work is to use a statistical approach to design a numerical predictor that correlates better with in vivo outcomes. Methods High-content analysis (HCA) was performed with 49 drugs on hepatic stellate cells (HSCs) LX-2 stained with 10 fibrotic markers. ~0.3 billion feature values from all cells in >150,000 images were quantified to reflect the drug effects. A systematic literature search on the in vivo effects of all 49 drugs on hepatofibrotic rats yields 28 papers with histological scores. The in vivo and in vitro datasets were used to compute a single efficacy predictor (Epredict). Results We used in vivo data from one context (CCl4 rats with drug treatments) to optimize the computation of Epredict. This optimized relationship was independently validated using in vivo data from two different contexts (treatment of DMN rats and prevention of CCl4 induction). A linear in vitro-in vivo correlation was consistently observed in all the three contexts. We used Epredict values to cluster drugs according to efficacy; and found that high-efficacy drugs tended to target proliferation, apoptosis and contractility of HSCs. Conclusions The Epredict statistic, based on a prioritized combination of in vitro features, provides a better correlation between in vitro and in vivo drug response than any of the traditional in vitro markers considered.Institute of Bioengineering and Nanotechnology (Singapore)Singapore. Biomedical Research CouncilSingapore. Agency for Science, Technology and ResearchSingapore-MIT Alliance for Research and Technology Center (C-185-000-033-531)Janssen Cilag (R-185-000-182-592)Singapore-MIT Alliance Computational and Systems Biology Flagship Project (C-382-641-001-091)Mechanobiology Institute, Singapore (R-714-001-003-271

    Extrinsic Magnetotransport Phenomena in Ferromagnetic Oxides

    Full text link
    This review is focused on extrinsic magnetotransport effects in ferromagnetic oxides. It consists of two parts; the second part is devoted to an overview of experimental data and theoretical models for extrinsic magnetotransport phenomena. Here a critical discussion of domain-wall scattering is given. Results on surfacial and interfacial magnetism in oxides are presented. Spin-polarized tunnelling in ferromagnetic junctions is reviewed and grain-boundary magnetoresistance is interpreted within a model of spin-polarized tunnelling through natural oxide barriers. The situation in ferromagnetic oxides is compared with data and models for conventional ferromagnets. The first part of the review summarizes basic material properties, especially data on the spin-polarization and evidence for half-metallicity. Furthermore, intrinsic conduction mechanisms are discussed. An outlook on the further development of oxide spin-electronics concludes this review.Comment: 133 pages, 47 figures, submitted to Rep. Prog. Phy

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Identity Theft and Consumer Payment Choice: Does Security Really Matter?

    No full text
    Security is a critical aspect of electronic payment systems. In recent years, the phenomenon of identity theft has gained widespread media coverage and has grown to be a major concern for payment providers and consumers alike. How identity theft has affected consumer’s payment choice is still an open research question. We use the 2009 Survey of Consumer Payment Choice (SCPC) to study the effect of identity theft incidents on adoption and usage patterns for nine different payment instruments in the U.S. Our results suggest that certain types of identity theft incidents affect positively the probability of adopting money orders, credit cards, stored value cards, bank account number payments and online banking bill payments. As for payment usage, we find that particular types of identity theft incidents have a positive and statistically significant effect on the use of cash, money orders and credit cards and a negative and statistically significant effect on the use of checks and online banking bill payments. These results are robust across different types of transaction, after controlling for various socio-demographic characteristics and perceptions toward payment methods

    Brain glutathione redox system significance for the control of silica-coated magnetite nanoparticles with or without mercury co-exposures mediated oxidative stress in European eel (Anguilla anguilla L.)

    No full text
    This in vitro study investigates the impact of silicacoated magnetite particles (Fe3O4@SiO2/SiDTC, hereafter called IONP; 2.5 mg L-1) and its interference with coexposure to persistent contaminant (mercury, Hg; 50 mu g L-1) during 0, 2, 4, 8, 16, 24, 48, and 72 h on European eel (Anguilla anguilla) brain and evaluates the significance of the glutathione (GSH) redox system in this context. The extent of damage (membrane lipid peroxidation, measured as thiobarbituric acid reactive substances, TBARS; protein oxidation, measured as reactive carbonyls, RCs) decreased with increasing period of exposure to IONP or IONP + Hg which was accompanied with differential responses of glutathione redox system major components (glutathione reductase, GR; glutathione peroxidase, GPX; total GSH, TGSH). The occurrence of antagonism between IONP and Hg impacts was evident at late hour (72 h), where significantly decreased TBARS and RC levels and GR and glutathione sulfotransferase (GST) activity imply the positive effect of IONP + Hg concomitant exposure against Hg-accrued negative impacts [vs. early (2 h) hour of exposure]. A period of exposuredependent IONP alone and IONP + Hg joint exposureaccrued impact was perceptible. Additionally, increased susceptibility of the GSH redox system to increased period of exposure to Hg was depicted, where insufficiency of elevated GR for the maintenance of TGSH required for membrane lipid and cellular protein protection was displayed. Overall, a finetuning among brain glutathione redox system components was revealed controlling IONP + Hg interactive impacts successfully

    PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD

    No full text

    Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant

    No full text
    GW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most 3.05 M-circle dot, and three equations of state considered here can be ruled out. We obtain a tighter limit of 2.67 M-circle dot for the case that the merger results in a hypermassive neutron star
    corecore