53 research outputs found

    Characterization of the major nuclear localization signal of the Borna disease virus phosphoprotein

    Get PDF
    Borna disease virus (BDV) replicates and transcribes its negative-sense RNA genome in the nucleus. The BDV phosphoprotein (P) is localized in the nucleus of infected cells and cells transfected with P expression constructs. To identify the nuclear localization signal (NLS) of P, COS- 7 cells were transfected with wild-type or mutant forms of P fused with green fluorescent protein (GFP). Whereas GFP alone was exclusively cytoplasmic, P or P-GFP were nuclear. Analysis of carboxy- and amino- terminal truncation mutants of P indicated that amino acids (aa) 20-37 are sufficient to promote efficient nuclear accumulation of the fusion protein. Residual nuclear import of GFP was observed with portions of P including aa 33-134 or aa 134-201, suggesting the presence of additional NLS motifs. The major NLS of P appears to be bipartite. It consists of two basic aa domains, R22RER25 and R30PRKIPR36, separated by four non-basic aa, S26GSP29

    Authentic Borna disease virus transcripts are spliced less efficiently than cDNA-derived viral RNAs

    Get PDF
    Borna disease virus (BDV) is a non-segmented, negative-strand RNA virus that replicates and transcribes its genome in the nucleus of infected cells. It uses the cellular splicing machinery to generate a set of alternatively spliced mRNAs from the 2.8 and 7.1 kb primary transcripts, each harbouring two introns. To determine whether splicing of these transcripts is regulated by viral factors, the extent of splicing was studied in infected cells and COS-7 cells transiently transfected with plasmids encoding the 2.8 kb RNA of BDV. Unspliced RNA was found to be the most abundant RNA species in infected cells, whereas viral transcripts lacking both introns were only found in minute amounts. In sharp contrast, plasmid-derived 2.8 kb RNA was predominantly intron 1-spliced and double-spliced. Co-expression of the BDV proteins P, N and X did not influence splicing of plasmid-expressed 2.8 kb RNA. Furthermore, the splicing pattern did not change when the 2.8 kb RNA was expressed in BDV-infected cells. Based on these results we speculate that splicing of authentic BDV transcripts is tightly linked to transcription by the viral polymerase

    Current and future water balance for coupled human-natural systems – Insights from a glacierized catchment in Peru

    Full text link
    Study region Santa River basin, Peru. Study focus In the Andes of Peru, climate change and socio-economic development are expected to jeopardize future water availability. However, little is known about the interplay of multiple climatic and non-climatic stressors and related processes driving water resource changes. We developed an integrated model that analyzes different trajectories of water availability including hydro-climatic (water supply) and socio-economic (water demand) variables with consistent multi-descriptor future scenarios until 2050. New hydrological insights for the region At the lower-basin outflow of Condorcerro, mean annual water availability is projected to increase by 10% ± 12% by 2050. This gain is mainly driven by an increase in annual precipitation amounts of about 14% (RCP2.6) and 18% (RCP8.5), respectively, which was computed using a global climate multi-model ensemble. In contrast, mean dry-season water availability is projected to substantially decrease by 33% and 36% ( ± 24%) by 2050, for RCP2.6 and RCP8.5, respectively. This decline is driven by a combination of diminishing glacier discharge and increasing water demand both of which adopt a major role in the absence of considerable precipitation inputs. These seasonal differences highlight the need to adequately consider spatiotemporal scales within multi-scenario water balance models to support local decision-making. Our results elucidate the need for improvements in water management and infrastructure to counteract diminishing dry-season water availability and to reduce future risks of water scarcity

    Patient leaflets on respiratory tract infections did not improve shared decision making and antibiotic prescriptions in a low-prescriber setting

    Get PDF
    Patient information leaflets can reduce antibiotic prescription rates by improving knowledge and encouraging shared decision making (SDM) in patients with respiratory tract infections (RTI). The effect of these interventions in antibiotic low-prescriber settings is unknown. We conducted a pragmatic pre-/post interventional study between October 2022 and March 2023 in Swiss outpatient care. The intervention was the provision of patient leaflets informing about RTIs and antibiotics use. Main outcomes were the extent of SDM, antibiotic prescription rates, and patients' awareness/knowledge about antibiotic use in RTIs. 408 patients participated in the pre-intervention period, and 315 patients in the post- intervention period. There was no difference in the extent of SDM (mean score (range 0-100): 65.86 vs. 64.65, p = 0.565), nor in antibiotic prescription rates (no prescription: 89.8% vs. 87.2%, p = 0.465) between the periods. Overall awareness/knowledge among patients with RTI was high and leaflets showed only a small effect on overall awareness/knowledge. In conclusion, in an antibiotic low-prescriber setting, patient information leaflets may improve knowledge, but may not affect treatment decisions nor antibiotic prescription rates for RTIs

    Time-bin entanglement at telecom wavelengths from a hybrid photonic integrated circuit

    Full text link
    Mass-deployable implementations for quantum communication require compact, reliable, and low-cost hardware solutions for photon generation, control and analysis. We present a fiber-pigtailed hybrid photonic circuit comprising nonlinear waveguides for photon-pair generation and a polymer interposer reaching 68dB of pump suppression and photon separation with >25dB polarization extinction ratio. The optical stability of the hybrid assembly enhances the quality of the entanglement, and the efficient background suppression and photon routing further reduce accidental coincidences. We thus achieve a 96(-8,+3)% concurrence and a 96(-5,+2)% fidelity to a Bell state. The generated telecom-wavelength, time-bin entangled photon pairs are ideally suited for distributing Bell pairs over fiber networks with low dispersion

    Einsatzmöglichkeiten der Kernenergie zur Deckung des Wärmebedarfs einer hochindustrialisierten Region und die sich daraus ergebenden Strukturänderungen : dargestellt am Beispiel Nordrhein-Westfalen

    Get PDF
    Die vorliegende Studie gibt einen Überblick über die mögliche Verwendung der Kernenergie, speziell der Hochtemperaturreaktor-Technologie, auf dem Wärme- und Elektrizitätsmarkt einer hochindustrialisierten Region. Es wird gezeigt, inwieweit die Kernenergie eine Chance bietet, die fossilen Primärenergieträger Kohle, Erdöl und Erdgas zu substituieren, damit diese ihrer in Zukunft an Bedeutung gewinnenden Rolle als Rohstoff in stärkerem Umfang gerecht werden können. Neben einer Beschreibung der Einsatzmöglichkeiten und des Einsatzpotentials für Hochtemperaturreaktoren in NRW werden die sich aus dem Einsatz ergebenden Konsequenzen im betriebs- und regionalwirtschaftlichen Bereich, sowie auf dem Sektor Umwelt untersucht

    CD40L Deficiency Attenuates Diet-Induced Adipose Tissue Inflammation by Impairing Immune Cell Accumulation and Production of Pathogenic IgG-Antibodies

    Get PDF
    BACKGROUND: Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L--an established marker and mediator of cardiovascular disease--induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo. METHODOLOGY/PRINCIPAL FINDINGS: WT or CD40L(-/-) mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L(-/-) mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L(-/-) mice. However, CD40L(-/-) mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L(-/-) mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels. CONCLUSION: We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease

    Insect pathogens as biological control agents: back to the future

    Get PDF
    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 15 years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of MCAs, particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for medically important pests including dipteran vectors,. These pathogens combine the advantages of chemical pesticides and microbial control agents (MCAs): they are fast acting, easy to produce at a relatively low cost, easy to formulate, have a long shelf life and allow delivery using conventional application equipment and systemics (i.e. in transgenic plants). Unlike broad spectrum chemical pesticides, B. thuringiensis toxins are selective and negative environmental impact is very limited. Of the several commercially produced MCAs, B. thuringiensis (Bt) has more than 50% of market share. Extensive research, particularly on the molecular mode of action of Bt toxins, has been conducted over the past two decades. The Bt genes used in insect-resistant transgenic crops belong to the Cry and vegetative insecticidal protein families of toxins. Bt has been highly efficacious in pest management of corn and cotton, drastically reducing the amount of broad spectrum chemical insecticides used while being safe for consumers and non-target organisms. Despite successes, the adoption of Bt crops has not been without controversy. Although there is a lack of scientific evidence regarding their detrimental effects, this controversy has created the widespread perception in some quarters that Bt crops are dangerous for the environment. In addition to discovery of more efficacious isolates and toxins, an increase in the use of Bt products and transgenes will rely on innovations in formulation, better delivery systems and ultimately, wider public acceptance of transgenic plants expressing insect-specific Bt toxins. Fungi are ubiquitous natural entomopathogens that often cause epizootics in host insects and possess many desirable traits that favor their development as MCAs. Presently, commercialized microbial pesticides based on entomopathogenic fungi largely occupy niche markets. A variety of molecular tools and technologies have recently allowed reclassification of numerous species based on phylogeny, as well as matching anamorphs (asexual forms) and teleomorphs (sexual forms) of several entomopathogenic taxa in the Phylum Ascomycota. Although these fungi have been traditionally regarded exclusively as pathogens of arthropods, recent studies have demonstrated that they occupy a great diversity of ecological niches. Entomopathogenic fungi are now known to be plant endophytes, plant disease antagonists, rhizosphere colonizers, and plant growth promoters. These newly understood attributes provide possibilities to use fungi in multiple roles. In addition to arthropod pest control, some fungal species could simultaneously suppress plant pathogens and plant parasitic nematodes as well as promote plant growth. A greater understanding of fungal ecology is needed to define their roles in nature and evaluate their limitations in biological control. More efficient mass production, formulation and delivery systems must be devised to supply an ever increasing market. More testing under field conditions is required to identify effects of biotic and abiotic factors on efficacy and persistence. Lastly, greater attention must be paid to their use within integrated pest management programs; in particular, strategies that incorporate fungi in combination with arthropod predators and parasitoids need to be defined to ensure compatibility and maximize efficacy. Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are potent MCAs. Substantial progress in research and application of EPNs has been made in the past decade. The number of target pests shown to be susceptible to EPNs has continued to increase. Advancements in this regard primarily have been made in soil habitats where EPNs are shielded from environmental extremes, but progress has also been made in use of nematodes in above-ground habitats owing to the development of improved protective formulations. Progress has also resulted from advancements in nematode production technology using both in vivo and in vitro systems; novel application methods such as distribution of infected host cadavers; and nematode strain improvement via enhancement and stabilization of beneficial traits. Innovative research has also yielded insights into the fundamentals of EPN biology including major advances in genomics, nematode-bacterial symbiont interactions, ecological relationships, and foraging behavior. Additional research is needed to leverage these basic findings toward direct improvements in microbial control
    • …
    corecore