118 research outputs found

    The CCAAT displacement protein/cut homeodomain protein represses osteocalcin gene transcription and forms complexes with the retinoblastoma protein-related protein p107 and cyclin A

    Get PDF
    Developmental control of bone tissue-specific genes requires positive and negative regulatory factors to accommodate physiological requirements for the expression or suppression of the encoded proteins. Osteocalcin (OC) gene transcription is restricted to the late stages of osteoblast differentiation. OC gene expression is suppressed in nonosseous cells and osteoprogenitor cells and during the early proliferative stages of bone cell differentiation. The rat OC promoter contains a homeodomain recognition motif within a highly conserved multipartite promoter element (OC box I) that contributes to tissue-specific transcription. In this study, we demonstrate that the CCAAT displacement protein (CDP), a transcription factor related to the cut homeodomain protein in Drosophila melanogaster, may regulate bone-specific gene transcription in immature proliferating osteoblasts. Using gel shift competition assays and DNase I footprinting, we show that CDP/cut recognizes two promoter elements (TATA and OC box I) of the bone-related rat OC gene. Overexpression of CDP/cut in ROS 17/2.8 osteosarcoma cells results in repression of OC promoter activity; this repression is abrogated by mutating OC box I. Gel shift immunoassays show that CDP/cut forms a proliferation-specific protein/DNA complex in conjunction with cyclin A and p107, a member of the retinoblastoma protein family of tumor suppressors. Our findings suggest that CDP/cut may represent an important component of a cell signaling mechanism that provides cross-talk between developmental and cell cycle-related transcriptional regulators to suppress bone tissue-specific genes during proliferative stages of osteoblast differentiation

    The Palestinian primary ciliary dyskinesia (PCD) cohort: clinical, diagnostic and genetic spectrum

    Get PDF
    Background: Diagnostic testing for PCD started in 2013 in Palestine. We aimed to describe the clinical, diagnostic and genetic spectrum of the Palestinian PCD cohort. Methods: 390 individuals with symptoms suggestive of PCD and 74 family members underwent nasal nitric oxide (nNO); and/or transmission electron microscopy (TEM); and/or PCD genetic panel or whole exome testing. Clinical characteristics were collected close to diagnosis including FEV1 GLI z-scores and BMI z-scores. Results: 82 had a definite positive PCD diagnosis (TEM and/or genetics) and 103 were highly likely (Kartagener’s and/or low nNO). Positive cases (n=82) had median age of 13.5 years (range 0-43), were highly consanguineous (95%) and 100% Arabic descent. Clinical features included persistent wet cough (95%), neonatal respiratory distress (79%), clubbing (21%) and situs inversus (41%). Lung function at diagnosis was already impaired FEV1 z-score mean -1.49 (sd=1.79) and BMI z-score mean -0.30 SD=1.4. 69 families were genotyped. 59 individuals from 42 families (60%) had mutations in 14 PCD-genes; CCDC39 (26% of families), DNAH11 (17%) and LRRC6 (12%) were the most common. 16% had mutations in candidate genes, 24% had no variants identified. 100% of variants were homozygous. TEM defects and genotype associations were as expected. Conclusions: Despite limited local resources, collaborations during the last 7-years have facilitated detailed geno- and phenotyping of one of the largest PCD cohorts globally. nNO identifies likely cases and targeted genetic testing, conducted locally, can now identify specific mutations in known families

    The Palestinian primary ciliary dyskinesia population: first results of the diagnostic, and genetic spectrum

    Get PDF
    BACKGROUND: Diagnostic testing for primary ciliary dyskinesia (PCD) started in 2013 in Palestine. We aimed to describe the diagnostic, genetic and clinical spectrum of the Palestinian PCD population. METHODS: Individuals with symptoms suggestive of PCD were opportunistically considered for diagnostic testing: nasal nitric oxide (nNO) measurement, transmission electron microscopy (TEM) and/or PCD genetic panel or whole-exome testing. Clinical characteristics of those with a positive diagnosis were collected close to testing including forced expiratory volume in 1 s (FEV1) Global Lung Index z-scores and body mass index z-scores. RESULTS: 68 individuals had a definite positive PCD diagnosis, 31 confirmed by genetic and TEM results, 23 by TEM results alone, and 14 by genetic variants alone. 45 individuals from 40 families had 17 clinically actionable variants and four had variants of unknown significance in 14 PCD genes. CCDC39, DNAH11 and DNAAF11 were the most commonly mutated genes. 100% of variants were homozygous. Patients had a median age of 10.0 years at diagnosis, were highly consanguineous (93%) and 100% were of Arabic descent. Clinical features included persistent wet cough (99%), neonatal respiratory distress (84%) and situs inversus (43%). Lung function at diagnosis was already impaired (FEV1 z-score median −1.90 (−5.0–1.32)) and growth was mostly within the normal range (z-score mean −0.36 (−3.03–2.57). 19% individuals had finger clubbing. CONCLUSIONS: Despite limited local resources in Palestine, detailed geno- and phenotyping forms the basis of one of the largest national PCD populations globally. There was notable familial homozygosity within the context of significant population heterogeneity

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    A rapid antibody screening haemagglutination test for predicting immunity to SARS-CoV-2 variants of concern

    Get PDF
    Background: Evaluation of susceptibility to emerging SARS-CoV-2 variants of concern (VOC) requires rapid screening tests for neutralising antibodies which provide protection. Methods: Firstly, we developed a receptor-binding domain-specific haemagglutination test (HAT) to Wuhan and VOC (alpha, beta, gamma and delta) and compared to pseudotype, microneutralisation and virus neutralisation assays in 835 convalescent sera. Secondly, we investigated the antibody response using the HAT after two doses of mRNA (BNT162b2) vaccination. Sera were collected at baseline, three weeks after the first and second vaccinations from older (80–99 years, n = 89) and younger adults (23–77 years, n = 310) and compared to convalescent sera from naturally infected individuals (1–89 years, n = 307). Results: Here we show that HAT antibodies highly correlated with neutralising antibodies (R = 0.72–0.88) in convalescent sera. Home-dwelling older individuals have significantly lower antibodies to the Wuhan strain after one and two doses of BNT162b2 vaccine than younger adult vaccinees and naturally infected individuals. Moverover, a second vaccine dose boosts and broadens the antibody repertoire to VOC in naïve, not previously infected older and younger adults. Most (72–76%) older adults respond after two vaccinations to alpha and delta, but only 58–62% to beta and gamma, compared to 96–97% of younger vaccinees and 68–76% of infected individuals. Previously infected older individuals have, similarly to younger adults, high antibody titres after one vaccination. Conclusions: Overall, HAT provides a surrogate marker for neutralising antibodies, which can be used as a simple inexpensive, rapid test. HAT can be rapidly adaptable to emerging VOC for large-scale evaluation of potentially decreasing vaccine effectiveness.publishedVersio

    A Biological Global Positioning System: Considerations for Tracking Stem Cell Behaviors in the Whole Body

    Get PDF
    Many recent research studies have proposed stem cell therapy as a treatment for cancer, spinal cord injuries, brain damage, cardiovascular disease, and other conditions. Some of these experimental therapies have been tested in small animals and, in rare cases, in humans. Medical researchers anticipate extensive clinical applications of stem cell therapy in the future. The lack of basic knowledge concerning basic stem cell biology-survival, migration, differentiation, integration in a real time manner when transplanted into damaged CNS remains an absolute bottleneck for attempt to design stem cell therapies for CNS diseases. A major challenge to the development of clinical applied stem cell therapy in medical practice remains the lack of efficient stem cell tracking methods. As a result, the fate of the vast majority of stem cells transplanted in the human central nervous system (CNS), particularly in the detrimental effects, remains unknown. The paucity of knowledge concerning basic stem cell biology—survival, migration, differentiation, integration in real-time when transplanted into damaged CNS remains a bottleneck in the attempt to design stem cell therapies for CNS diseases. Even though excellent histological techniques remain as the gold standard, no good in vivo techniques are currently available to assess the transplanted graft for migration, differentiation, or survival. To address these issues, herein we propose strategies to investigate the lineage fate determination of derived human embryonic stem cells (hESC) transplanted in vivo into the CNS. Here, we describe a comprehensive biological Global Positioning System (bGPS) to track transplanted stem cells. But, first, we review, four currently used standard methods for tracking stem cells in vivo: magnetic resonance imaging (MRI), bioluminescence imaging (BLI), positron emission tomography (PET) imaging and fluorescence imaging (FLI) with quantum dots. We summarize these modalities and propose criteria that can be employed to rank the practical usefulness for specific applications. Based on the results of this review, we argue that additional qualities are still needed to advance these modalities toward clinical applications. We then discuss an ideal procedure for labeling and tracking stem cells in vivo, finally, we present a novel imaging system based on our experiments

    Small-molecule allosteric activators of PDE4 long form cyclic AMP phosphodiesterases

    Get PDF
    Cyclic AMP (cAMP) phosphodiesterase-4 (PDE4) enzymes degrade cAMP and underpin the compartmentalization of cAMP signaling through their targeting to particular protein complexes and intracellular locales. We describe the discovery and characterization of a small-molecule compound that allosterically activates PDE4 long isoforms. This PDE4-specific activator displays reversible, noncompetitive kinetics of activation (increased Vmax with unchanged Km), phenocopies the ability of protein kinase A (PKA) to activate PDE4 long isoforms endogenously, and requires a dimeric enzyme assembly, as adopted by long, but not by short (monomeric), PDE4 isoforms. Abnormally elevated levels of cAMP provide a critical driver of the underpinning molecular pathology of autosomal dominant polycystic kidney disease (ADPKD) by promoting cyst formation that, ultimately, culminates in renal failure. Using both animal and human cell models of ADPKD, including ADPKD patient-derived primary cell cultures, we demonstrate that treatment with the prototypical PDE4 activator compound lowers intracellular cAMP levels, restrains cAMP-mediated signaling events, and profoundly inhibits cyst formation. PDE4 activator compounds thus have potential as therapeutics for treating disease driven by elevated cAMP signaling as well as providing a tool for evaluating the action of long PDE4 isoforms in regulating cAMP-mediated cellular processes

    Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk

    Get PDF
    Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer

    Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    Get PDF
    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10−8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction
    corecore