219 research outputs found
Clinical Manifestations and Case Management of Ebola Haemorrhagic Fever caused by a newly identified virus strain, Bundibugyo, Uganda, 2007-2008
A confirmed Ebola haemorrhagic fever (EHF) outbreak in Bundibugyo, Uganda, November 2007-February 2008, was caused by a putative new species (Bundibugyo ebolavirus). It included 93 putative cases, 56 laboratory-confirmed cases, and 37 deaths (CFR = 25%). Study objectives are to describe clinical manifestations and case management for 26 hospitalised laboratory-confirmed EHF patients. Clinical findings are congruous with previously reported EHF infections. The most frequently experienced symptoms were non-bloody diarrhoea (81%), severe headache (81%), and asthenia (77%). Seven patients reported or were observed with haemorrhagic symptoms, six of whom died. Ebola care remains difficult due to the resource-poor setting of outbreaks and the infection-control procedures required. However, quality data collection is essential to evaluate case definitions and therapeutic interventions, and needs improvement in future epidemics. Organizations usually involved in EHF case management have a particular responsibility in this respect
The role of rapid diagnostics in managing Ebola epidemics
Ebola emerged in West Africa around December 2013 and swept through Guinea, Sierra Leone and Liberia, giving rise to 27,748 confirmed, probable and suspected cases reported by 29 July 2015. Case diagnoses during the epidemic have relied on polymerase chain reaction-based tests. Owing to limited laboratory capacity and local transport infrastructure, the delays from sample collection to test results being available have often been 2 days or more. Point-of-care rapid diagnostic tests offer the potential to substantially reduce these delays. We review Ebola rapid diagnostic tests approved by the World Health Organization and those currently in development. Such rapid diagnostic tests could allow early triaging of patients, thereby reducing the potential for nosocomial transmission. In addition, despite the lower test accuracy, rapid diagnostic test-based diagnosis may be beneficial in some contexts because of the reduced time spent by uninfected individuals in health-care settings where they may be at increased risk of infection; this also frees up hospital beds. We use mathematical modelling to explore the potential benefits of diagnostic testing strategies involving rapid diagnostic tests alone and in combination with polymerase chain reaction testing. Our analysis indicates that the use of rapid diagnostic tests with sensitivity and specificity comparable with those currently under development always enhances control, whether evaluated at a health-care-unit or population level. If such tests had been available throughout the recent epidemic, we estimate, for Sierra Leone, that their use in combination with confirmatory polymerase chain-reaction testing might have reduced the scale of the epidemic by over a third
Marburg Virus Infection Detected in a Common African Bat
Marburg and Ebola viruses can cause large hemorrhagic fever (HF) outbreaks with high case fatality (80–90%) in human and great apes. Identification of the natural reservoir of these viruses is one of the most important topics in this field and a fundamental key to understanding their natural history. Despite the discovery of this virus family almost 40 years ago, the search for the natural reservoir of these lethal pathogens remains an enigma despite numerous ecological studies. Here, we report the discovery of Marburg virus in a common species of fruit bat (Rousettus aegyptiacus) in Gabon as shown by finding virus-specific RNA and IgG antibody in individual bats. These Marburg virus positive bats represent the first naturally infected non-primate animals identified. Furthermore, this is the first report of Marburg virus being present in this area of Africa, thus extending the known range of the virus. These data imply that more areas are at risk for MHF outbreaks than previously realized and correspond well with a recently published report in which three species of fruit bats were demonstrated to be likely reservoirs for Ebola virus
Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus
<p>Abstract</p> <p>Background</p> <p>Ebola and Marburg viruses cause highly lethal hemorrhagic fevers in humans. Recently, bats of multiple species have been identified as possible natural hosts of <it>Zaire ebolavirus </it>(ZEBOV) in Gabon and Republic of Congo, and also of <it>marburgvirus </it>(MARV) in Gabon and Democratic Republic of Congo.</p> <p>Methods</p> <p>We tested 2147 bats belonging to at least nine species sampled between 2003 and 2008 in three regions of Gabon and in the Ebola epidemic region of north Congo for IgG antibodies specific for ZEBOV and MARV.</p> <p>Results</p> <p>Overall, IgG antibodies to ZEBOV and MARV were found in 4% and 1% of bats, respectively. ZEBOV-specific antibodies were found in six bat species (<it>Epomops franqueti, Hypsignathus monstrosus, Myonycteris torquata, Micropteropus pusillus, Mops condylurus </it>and <it>Rousettus aegyptiacus</it>), while MARV-specific antibodies were only found in <it>Rousettus aegyptiacus </it>and <it>Hypsignathus monstrosus</it>. The prevalence of MARV-specific IgG was significantly higher in <it>R. aegyptiacus </it>members captured inside caves than elsewhere. No significant difference in prevalence was found according to age or gender. A higher prevalence of ZEBOV-specific IgG was found in pregnant females than in non pregnant females.</p> <p>Conclusion</p> <p>These findings confirm that ZEBOV and MARV co-circulate in Gabon, the only country where bats infected by each virus have been found. IgG antibodies to both viruses were detected only in <it>Rousettus aegyptiacus</it>, suggesting that this bat species may be involved in the natural cycle of both Marburg and Ebola viruses. The presence of MARV in Gabon indicates a potential risk for a first human outbreak. Disease surveillance should be enhanced in areas near caves.</p
The Use of a Mobile Laboratory Unit in Support of Patient Management and Epidemiological Surveillance during the 2005 Marburg Outbreak in Angola
A mobile laboratory unit (MLU) was deployed to Uige, Angola as part of the World Health Organization response to an outbreak of viral hemorrhagic fever caused by Marburg virus (MARV). Utilizing mainly quantitative real-time PCR assays, this laboratory provided specific MARV diagnostics in the field. The MLU operated for 88 consecutive days allowing MARV-specific diagnostic response in <4 hours from sample receiving. Most cases were found among females in the child-bearing age and in children less than five years of age including a high number of paediatric cases implicating breastfeeding as potential transmission route. Oral swabs were identified as a useful alternative specimen source to the standard whole blood/serum specimens for patients refusing blood draw. There was a high concordance in test results between the MLU and the reference laboratory in Luanda operated by the US Centers for Disease Control and Prevention. The MLU was an important outbreak response asset providing valuable support in patient management and epidemiological surveillance. Field laboratory capacity should be expanded and made an essential part of any future outbreak investigation
Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble and Transmembrane C-type Lectin Receptors
Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Serologic Cross-Reactivity of Human IgM and IgG Antibodies to Five Species of Ebola Virus
Five species of Ebola virus (EBOV) have been identified, with nucleotide differences of 30–45% between species. Four of these species have been shown to cause Ebola hemorrhagic fever (EHF) in humans and a fifth species (Reston ebolavirus) is capable of causing a similar disease in non-human primates. While examining potential serologic cross-reactivity between EBOV species is important for diagnostic assays as well as putative vaccines, the nature of cross-reactive antibodies following EBOV infection has not been thoroughly characterized. In order to examine cross-reactivity of human serologic responses to EBOV, we developed antigen preparations for all five EBOV species, and compared serologic responses by IgM capture and IgG enzyme-linked immunosorbent assay (ELISA) in groups of convalescent diagnostic sera from outbreaks in Kikwit, Democratic Republic of Congo (n = 24), Gulu, Uganda (n = 20), Bundibugyo, Uganda (n = 33), and the Philippines (n = 18), which represent outbreaks due to four different EBOV species. For groups of samples from Kikwit, Gulu, and Bundibugyo, some limited IgM cross-reactivity was noted between heterologous sera-antigen pairs, however, IgM responses were largely stronger against autologous antigen. In some instances IgG responses were higher to autologous antigen than heterologous antigen, however, in contrast to IgM responses, we observed strong cross-reactive IgG antibody responses to heterologous antigens among all sets of samples. Finally, we examined autologous IgM and IgG antibody levels, relative to time following EHF onset, and observed early peaking and declining IgM antibody levels (by 80 days) and early development and persistence of IgG antibodies among all samples, implying a consistent pattern of antibody kinetics, regardless of EBOV species. Our findings demonstrate limited cross-reactivity of IgM antibodies to EBOV, however, the stronger tendency for cross-reactive IgG antibody responses can largely circumvent limitations in the utility of heterologous antigen for diagnostic assays and may assist in the development of antibody-mediated vaccines to EBOV
Demonstration of Cross-Protective Vaccine Immunity against an Emerging Pathogenic Ebolavirus Species
A major challenge in developing vaccines for emerging pathogens is their continued evolution and ability to escape human immunity. Therefore, an important goal of vaccine research is to advance vaccine candidates with sufficient breadth to respond to new outbreaks of previously undetected viruses. Ebolavirus (EBOV) vaccines have demonstrated protection against EBOV infection in nonhuman primates (NHP) and show promise in human clinical trials but immune protection occurs only with vaccines whose antigens are matched to the infectious challenge species. A 2007 hemorrhagic fever outbreak in Uganda demonstrated the existence of a new EBOV species, Bundibugyo (BEBOV), that differed from viruses covered by current vaccine candidates by up to 43% in genome sequence. To address the question of whether cross-protective immunity can be generated against this novel species, cynomolgus macaques were immunized with DNA/rAd5 vaccines expressing ZEBOV and SEBOV glycoprotein (GP) prior to lethal challenge with BEBOV. Vaccinated subjects developed robust, antigen-specific humoral and cellular immune responses against the GP from ZEBOV as well as cellular immunity against BEBOV GP, and immunized macaques were uniformly protected against lethal challenge with BEBOV. This report provides the first demonstration of vaccine-induced protective immunity against challenge with a heterologous EBOV species, and shows that Ebola vaccines capable of eliciting potent cellular immunity may provide the best strategy for eliciting cross-protection against newly emerging heterologous EBOV species
Neutrinos
229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms
- …
