83 research outputs found

    Ganglioside GM3 Has an Essential Role in the Pathogenesis and Progression of Rheumatoid Arthritis

    Get PDF
    Rheumatoid arthritis (RA), a chronic systemic inflammatory disorder that principally attacks synovial joints, afflicts over 2 million people in the United States. Interleukin (IL)-17 is considered to be a master cytokine in chronic, destructive arthritis. Levels of the ganglioside GM3, one of the most primitive glycosphingolipids containing a sialic acid in the structure, are remarkably decreased in the synovium of patients with RA. Based on the increased cytokine secretions observed in in vitro experiments, GM3 might have an immunologic role. Here, to clarify the association between RA and GM3, we established a collagen-induced arthritis mouse model using the null mutation of the ganglioside GM3 synthase gene. GM3 deficiency exacerbated inflammatory arthritis in the mouse model of RA. In addition, disrupting GM3 induced T cell activation in vivo and promoted overproduction of the cytokines involved in RA. In contrast, the amount of the GM3 synthase gene transcript in the synovium was higher in patients with RA than in those with osteoarthritis. These findings indicate a crucial role for GM3 in the pathogenesis and progression of RA. Control of glycosphingolipids such as GM3 might therefore provide a novel therapeutic strategy for RA

    Th17 cytokines and arthritis

    Get PDF
    Th17 cells are implicated in human autoimmune diseases, such as rheumatoid arthritis (RA), although it has not been established whether this persistent destructive arthritis is driven by Th1 and/or Th17 cells. Interleukin-17A (IL-17A) contributes to the pathogenesis of arthritis as has been shown in several experimental arthritis models. Importantly, recent data from first clinical trials with anti-IL-17A antibody treatment in psoriatic arthritis patients and RA patients looks promising. This review summarizes the findings about the role of Th17 cells in arthritis and discusses the impact of the different Th17 cytokines in the pathogenesis of this disease. However, further studies are needed to unravel the interplay between IL-17A and other Th17 cytokines such as IL-17F, IL-22, and IL-21 in the pathoimmunological process of this crippling disease, in particular, whether regulating Th17 cell activity or specific combinations of Th17 cytokines will have additional value compared to neutralizing IL-17A activity alone. Moreover, tumor necrosis factor-positive Th17 cells are discussed as potential dangerous cells in driving persistent arthritis in human early RA

    Managing sedentary behavior to reduce the risk of diabetes and cardiovascular disease

    Get PDF
    Modern human environments are vastly different from those of our forebears. Rapidly advancing technology in transportation, communications, workplaces, and home entertainment confer a wealth of benefits, but increasingly come with costs to human health. Sedentary behavior—too much sitting as distinct from too little physical activity—contributes adversely to cardiometabolic health outcomes and premature mortality. Findings from observational epidemiology have been synthesized in meta-analyses, and evidence is now shifting into the realm of experimental trials with the aim of identifying novel mechanisms and potential causal relationships. We discuss recent observational and experimental evidence that makes a compelling case for reducing and breaking up prolonged sitting time in both the primary prevention and disease management contexts. We also highlight future research needs, the opportunities for developing targeted interventions, and the potential of population-wide initiatives designed to address too much sitting as a health risk

    Phenotypic characterisation of regulatory T cells in dogs reveals signature transcripts conserved in humans and mice

    Get PDF
    Regulatory T cells (Tregs) are a double-edged regulator of the immune system. Aberrations of Tregs correlate with pathogenesis of inflammatory, autoimmune and neoplastic disorders. Phenotypically and functionally distinct subsets of Tregs have been identified in humans and mice on the basis of their extensive portfolios of monoclonal antibodies (mAb) against Treg surface antigens. As an important veterinary species, dogs are increasingly recognised as an excellent model for many human diseases. However, insightful study of canine Tregs has been restrained by the limited availability of mAb. We therefore set out to characterise CD4+CD25high T cells isolated ex vivo from healthy dogs and showed that they possess a regulatory phenotype, function, and transcriptomic signature that resembles those of human and murine Tregs. By launching a cross-species comparison, we unveiled a conserved transcriptomic signature of Tregs and identified that transcript hip1 may have implications in Treg function

    Impact of inactivity and exercise on the vasculature in humans

    Get PDF
    The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct “vascular deconditioning and conditioning” effects which likely modify cardiovascular risk

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    EPMA position paper in cancer: current overview and future perspectives

    Get PDF
    corecore