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phenotypic characterisation of 
regulatory t cells in dogs reveals 
signature transcripts conserved in 
humans and mice
Ying Wu  1,5, Yu-Mei chang  1, Anneliese J. Stell1, Simon L. priestnall  1, Eshita Sharma  2, 
Michelle R. Goulart  1,6, John Gribben 3, Dong Xia  1 & Oliver A. Garden  1,4

Regulatory T cells (Tregs) are a double-edged regulator of the immune system. Aberrations of Tregs 
correlate with pathogenesis of inflammatory, autoimmune and neoplastic disorders. Phenotypically 
and functionally distinct subsets of Tregs have been identified in humans and mice on the basis of their 
extensive portfolios of monoclonal antibodies (mAb) against Treg surface antigens. As an important 
veterinary species, dogs are increasingly recognised as an excellent model for many human diseases. 
However, insightful study of canine Tregs has been restrained by the limited availability of mAb. We 
therefore set out to characterise CD4+CD25high t cells isolated ex vivo from healthy dogs and showed 
that they possess a regulatory phenotype, function, and transcriptomic signature that resembles 
those of human and murine Tregs. By launching a cross-species comparison, we unveiled a conserved 
transcriptomic signature of Tregs and identified that transcript hip1 may have implications in treg 
function.

Regulatory T cells (Tregs) are dominant regulators of immune responses against self, pathogenic and commensal 
antigens in the periphery1. As key players in the maintenance of immune health, aberrations of Tregs have patho-
genic implications in a number of inflammatory, autoimmune and neoplastic diseases, making them a compelling 
biomarker and immunotherapeutic target2–7. Tregs are heterogeneous in the periphery8,9. Despite the discovery 
of various Treg subtypes such as type 1 regulatory T (Tr1)10,11, CD8+ 12,13, CD4+CD25−LAG3+ 14,15, γδ TCR+16,17 
and invariant natural killer T (iNKT)18,19 regulatory cells, CD4+FoxP3+ Tregs remain as the principal target of 
investigation in humans and mice20,21. CD4+CD25+FoxP3+ T cells in mice are suppressive20,22, whereas accumu-
lating evidence suggests that CD4+FoxP3+ T cells in humans are heterogeneous in phenotype and function23–25. 
In addition to the extensive portfolio of surface markers for human Tregs, including CD25, CD127, CD45RA, 
ICOS and HLA-DR, sialyl lewis x (CD15s) identifies terminally differentiated effector Tregs26.

Although murine models for a number of pathobiological and immunotherapeutic studies are firmly estab-
lished, large animal models are increasingly gaining traction. Of these, the dog recapitulates human autoimmune 
and neoplastic diseases remarkably well. Such diseases are spontaneous in canine patients, which have a compe-
tent immune system, and clinical presentations, treatment modalities and living environments shared with their 
human counterparts27–29. However, in-depth study of canine Tregs has been hampered by the limited availability 
of monoclonal antibodies (mAb) against surface antigens. Apart from the cross-reactive clones validated for 
canine intracellular FoxP3 (clone FJK-16s)30,31 and Helios (clone 226 F)31, anti-CD25 (clone P4A10) is the only 
known mAb labelling the extracellular surface of canine Tregs32. CD4+CD25+/high T cells are enriched for sup-
pressive FoxP3+ T cells in humans and mice33–35. Our previous work has shown that canine CD4+CD25high T cells 
induced in vitro are regulatory31, but studies examining these cells ex vivo are limited in number and scope36–38. 
We therefore set out to characterise canine CD4+CD25high T cells isolated ex vivo, hypothesising that they possess 
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regulatory phenotype and function. Furthermore, we investigated the transcriptomic phenotype of Tregs in dogs 
and compared it with those of humans and mice on the basis of published transcriptomic data, revealing a broadly 
conserved Treg signature across these species and consensus transcripts encoding molecules not hitherto asso-
ciated with Tregs.

Materials and Methods
Sample collection. This study was approved by the Clinical Research Ethical Review Board (URN 2016 
1592) of the Royal Veterinary College (RVC) in the United Kingdom. Eleven healthy dogs, defined by the absence 
of clinical signs and a normal physical examination undertaken by a veterinarian or veterinary nurse, were 
recruited at the RVC. Peripheral blood samples were collected from the jugular or lateral saphenous vein in ster-
ile fashion by a veterinarian or veterinary nurse under the Animals (Scientific Procedures) Act 1986, following 
informed written consent by the owners of the dogs.

Isolation of peripheral blood mononuclear cells. Mononuclear cells were isolated from the periph-
eral blood by density gradient centrifugation, using Histopaque®-1077 (Sigma-Aldrich, Dorset, UK). Blood was 
diluted by an equal volume of phosphate-buffered saline (PBS; Sigma-Aldrich) with 2% v/v fetal bovine serum 
(FBS; Thermo Fisher Scientific, Waltham, MA, USA). The diluted blood was then layered onto an equal volume 
of Histopaque, before centrifugation at 400 g for 30 minutes at room temperature with minimal acceleration and 
braking. The purified peripheral blood mononuclear cells (PBMCs) were washed twice in PBS with 10% v/v FBS 
by centrifuging at 600 g for five minutes at 4 °C. After washing, cells were re-suspended in PBS with 10% v/v FBS, 
and counted using a haemocytometer before flow cytometric analysis. Dead cells were excluded by trypan blue 
staining.

Flow cytometry. Freshly isolated PBMCs were analysed by flow cytometry using mAb against 
canine-specific or cross-reactive antigens (all from Thermo Fisher Scientific). Extracellular labelling was per-
formed by incubating PBMCs for 30 minutes at 4 °C with a mixture of FITC-conjugated anti-dog CD45 (clone 
YKIX716.13), PerCP-eFluor® 710-conjugated anti-dog CD5 (clone YKIX322.3), PE-Cy7-conjugated anti-dog 
CD4 (clone YKIX302.9), eFluor® 450-conjugated anti-dog CD8 (clone YCATE55.9) and PE-conjugated anti-dog 
CD25 (clone P4A10). After washing twice with PBS, cells were incubated in eBioscience™ FoxP3/transcription 
factor fixation/permeabilisation buffer (Thermo Fisher Scientific) according to the manufacturer’s instructions, 
then labelled with APC-conjugated anti-mouse/rat FoxP3 (clone FJK-16s) for 30 minutes at 4 °C. After washing 
with 1x permeabilisation buffer, cells were re-suspended in 200 μL PBS before being acquired on a FACSCanto 
II flow cytometer (Becton-Dickinson (BD); Franklin Lakes, NJ, USA). Flow cytometric data were analysed using 
FlowJo® software, version 7.6 (Tree Star, Ashland, OR, USA). Positive events were gated according to correspond-
ing isotype or fluorescence minus one (FMO) controls.

Fluorescence-activated cell sorting. Fluorescence-activated cell sorting (FACS™) was used to sort 
PBMCs into subpopulations for subsequent experiments. Freshly isolated PBMCs were labelled by a mixture 
of PerCP-eFluor® 710-conjugated anti-dog CD5 (clone YKIX322.3), PE-Cy7-conjugated anti-dog CD4 (clone 
YKIX302.9), PE-conjugated anti-dog CD25 (clone P4A10) and Alexa Fluor® 700-conjugated anti-mouse CD11b 
for 30 minutes at 4 °C. After washing twice with PBS, cells were stained with 4′,6-diamidino-2-phenylindole 
(DAPI; BioLegend, San Diego, CA, USA) at room temperature for 10 minutes prior to sorting on BD 
FACSAria™ II. CD4+CD25high and CD4+CD25− T cells were isolated from CD5+CD11b− cells, and autolo-
gous antigen-presenting cells (APCs) were identified as CD5−CD11b+. For functional assays, CD4+CD25high 
T cells were defined as the 5% of CD4+ T cells showing the highest CD25 expression, whereas CD4+CD25− T 
cells were defined as the 20% of CD4+ T cells showing the lowest CD25 expression. For transcriptomic assays, 
CD4+CD25high T cells were defined as the 1% of CD4+ T cells showing the highest CD25 expression, whereas 
CD4+CD25− T cells were defined as before.

In vitro suppression assay. CD4+CD25high and CD4+CD25− T cells sorted from the peripheral blood of 
healthy dogs were immediately re-suspended in complete culture medium (RPMI-1640 complemented with 10% 
v/v FBS, 10 mM HEPES, 100 μg/mL streptomycin, 100 U/mL penicillin and 0.5 mM β-mercaptoethanol; all rea-
gents from Sigma-Aldrich). The responder T (Tresp) cell population (CD4+CD25−) was stained with CellTrace™ 
violet proliferation dye according to the manufacturer’s instructions (Thermo Fisher Scientific), and seeded 
into a 96-well plate at a density of 1–5 × 104 cells per well. The suppressor cell population (CD4+CD25high) was 
co-cultured with Tresp cells at a ratio (Treg:Tresp) of 1:1 and/or 1:2. A population of autologous CD5−CD11b+ 
monocytes at a proportion of 1/5 of that of Tresp cells were also seeded into each well, as APCs. The mixed cell 
culture contained a total volume of 200 μL with 2.5 μg/mL concanavalin A (ConA) (Sigma-Aldrich) and was 
incubated for 96 hours at 37 °C, with 5% CO2. Three control groups were set up in the same fashion, including 
un-stimulated Tresp alone, stimulated Tresp alone and CD4+CD25− co-cultured with Tresp.

RNA extraction. CD4+CD25high and CD4+CD25− T cells sorted from the peripheral blood of five healthy 
dogs were immediately re-suspended in RNA Bee (AMS Biotechnology, Abingdon, UK) at a density of 2 × 106 
cells/mL. Two hundred microlitres of chloroform (Sigma-Aldrich) per millilitre of RNA Bee suspension were 
added, before thorough admixture, transfer to a 2 mL MaXtract High Density tube (QIAGEN, Hilden, Germany), 
and incubation on ice for three minutes. The tube was then centrifuged at 12,000 g for 15 minutes at 4 °C. After 
centrifugation, the upper aqueous layer was carefully transferred to a 1.5 mL DNase/RNase-free Eppendorf 
Tube® (Eppendorf, Stevenage, UK), before being mixed completely with an equal volume of 100% ethanol 
(Sigma-Aldrich). The mixture was then transferred into a Zymo-Spin™ IC column on top of a collection tube 
and centrifuged according to the manufacturer’s instructions (Direct-zol™ RNA MicroPrep Kit, Zymo Research, 
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Irvine, CA, USA). All samples were treated with DNase I during extraction; the final product was eluted in 
6–10 μL of DNase/RNase-free water.

Library construction and sequencing. SMARTer® Universal Low Input RNA Kit (Clontech, 
California, USA) was used to construct the complementary (c) DNA library at the Oxford Genomics Centre, 
University of Oxford (Oxford, UK). RNA was converted to cDNA using Oligo (dT) primers and adapters, fol-
lowed by PCR amplification. The cDNA library was then sheared into short fragments using a Covaris S220 
Focused-Ultrasonicator (Thermo Fisher Scientific) for subsequent random shotgun Illumina sequencing. The 
75-bp, paired-end sequencing was performed on the prepared DNA libraries, using the HiSeq. 4000 System 
(Illumina, San Diego, CA, USA) at the Oxford Genomics Centre. Samples were loaded onto the clustered 
sequencing Flow Cell, which was then primed with sequencing by synthesis (SBS) reagents and hybridised by 
Read 1 and Read 2 primers. The run was recorded by HCS 3.4.0 (Illumina).

Read processing and expression quantification. Sequencing reads were trimmed using Skewer (ver-
sion 0.1.125) to remove the adapter and anchor sequences added during library construction and sequencing. 
Trimmed transcript reads were mapped to the canine genome, CanFam3.1 (Ensembl Genes, release 91), using 
HISAT2 (version 2.0.0-beta). The uniquely mapped read pairs were quantified using featureCounts (version 
1.5.0), and annotated using the same canine genomic data. Mapping metrics were generated using Picard Tools 
(version 1.92). The metrics and variants for assessing read distribution, biotype distribution and mapped tran-
scripts were generated using R packages (version 3.4.2) with in-house scripts. Read counts were all converted to 
transcripts per million (TPM) to normalise sequencing depth and gene lengths.

Differential expression analysis. Transcripts differentially expressed between canine CD4+CD25high and 
CD4+CD25− T cells were identified using Bioconductor package edgeR (Bioconductor version 3.6), with fold 
change (FC) values and statistical significance, the latter of which was represented by false discovery rate (FDR). 
R version 3.4.2 was used to conduct principal component analysis (PCA) and volcano plots.

Ingenuity pathway analysis. Differentially expressed transcripts (FDR < 0.05) with FC and FDR values 
were input into the software Ingenuity Pathway Analysis (IPA; Ingenuity Systems Inc., Redwood City, CA, USA) 
to identify biological pathways affected by the altered expression of these transcripts (|Z| score ≥ 2).

Reverse transcription and quantitative PCR. Purified total RNA was converted to cDNA by perform-
ing reverse transcription (RT), using the Precision nanoScript™ 2 Reverse Transcription Kit (Primerdesign, 
Southampton, UK). One reaction of 20 μL volume in total contained RNA template (up to 2 μg), combined Oligo 
(dT) and random nonamer primers, nanoScript™ 2 Buffer, dNTP mix, nanoScript™ 2 enzyme and RNase/DNase 
free water. The reaction included an annealing step of 65 °C for five minutes, then immediate cooling on ice, 
followed by an extension step at room temperature for five minutes and 42 °C for 20 minutes, then 75 °C for 
10 minutes. The abundance of transcripts of interest was then measured by quantitative (q) PCR, using cDNA 
as reaction template, according to the manufacturer’s instructions. Primers specific to each transcript were all 
from the Taqman® Gene Expression Assays (GEAs) (Thermo Fisher Scientific), targeting fam129a (Cf02724989_
m1), lmna (Cf02678125_g1), cadm1 (Cf02645230_m1), anxa2 (Cf02734571_gH), ctsz (Cf02661948_m1), actn4 
(Cf02689744_g1), csf1 (Cf01094425_m1), hip1 (Cf02698307_m1), galm (Cf02648153_m1), pou2f2 (Cf00922171_
g1), frmd4b (Cf02646908_m1), il2ra (Cf02623133_m1), foxp3 (Cf02741700_m1) and ikzf2 (Cf00915981_m1). 
Two reference transcripts, ubc encoding CG11624-PA, isoform A and sdha encoding succinate dehydrogenase 
flavoprotein subunit, were selected following validation by means of the Primerdesign Dog geNorm™ Kit. The 
relative expression of the target transcript was calculated using Pfaffl’s model39 as below:

=
∆ −

∆ −
Relative expression E

E
( )
( )

TAR
C Control Sample

REF
C Control Sample

( )

( )

qTAR

qREF

E represents E value; TAR, target transcript; REF, reference transcript; Control, CD4+CD25− cells; Sample, 
CD4+CD25high cells. The relative expression ratio calculated by this equation indicated the FC of the target tran-
script abundance in the sample population when compared to that of the control population.

Interspecies comparisons. To compare the transcriptomic profiles of canine CD4+CD25high T cells across 
species with those of human and murine Tregs, published resources were used. The selected human and murine 
studies22,40 used different analytical methods from those in this study, but were the most comprehensive in the lit-
erature and conducted on freshly isolated Tregs in comparison to CD4+CD25− T cells. Raw transcriptomic data of 
the published human and murine studies were analysed following the same pipeline as for canine CD4+CD25high 
T cells, with respective genomic information. The data were processed using the web-based bioinformatics plat-
form Galaxy41. Similarity scores were calculated using R OrderedList42 (version 1.48.0), to determine the number 
of shared transcripts between two species in the first n consensus transcripts, which were ordered by differential 
expression FC values. A similarity score was yielded, in which transcripts received higher weight the closer they 
were to the top or bottom end of the ordered list. Similarity scores for n = 100, 150, 200, 300, 400, 500 and 750 
transcripts were reported, respectively. Statistical significance was assessed for each of the similarity scores, by 
comparing with a null distribution generated by randomly scrambling the order of the transcripts.

Statistical analysis. Summary data are shown as mean ± standard error of the mean (SEM). Statistical anal-
ysis was performed using GraphPad Prism version 7 (GraphPad Software, La Jolla, CA, USA).
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Results
Freshly isolated canine CD4+CD25high T cells are enriched for FoxP3. To test the hypothesis that 
freshly isolated canine CD4+CD25+ T cells have a regulatory phenotype, PBMCs of 11 healthy dogs were labelled 
with a mAb panel incorporating all markers of canine Tregs to date. When the CD25 gate was moved upwards 
to incorporate increasing CD25 expression per cell, from the highest 5% to the highest 0.2%, the proportion of 
FoxP3+ cells significantly increased from 36.89 ± 2.79% to 74.07 ± 4.81%, suggesting that ex vivo CD4+CD25high 
T cells were enriched for FoxP3 (Fig. 1a,b).

The top 1% of CD4+CD25+ T cells were selected for subsequent phenotypic characterisation, balancing the 
enrichment for FoxP3 (61.59 ± 4.76%) with the need to isolate sufficient numbers. The proportional expression of 
FoxP3 in CD4+CD25high T cells was compared to CD4+CD25− cells of the same dogs, the latter selected by gating 
the 20% of CD4+ T cells showing the lowest CD25 expression. FoxP3+ cells in the CD25high fraction were gated in 
two ways, making a comparison with either the corresponding isotype control or the paired CD25− population 
(a negative biological control). The two gating methods yielded similar results: CD25high T cells had significantly 
greater FoxP3 expression than CD25− T cells from the same dogs (Fig. 1c).

Figure 1. CD4+CD25high T cells isolated ex vivo are enriched for FoxP3. (a) Representative flow cytometric 
plots showing that proportional expression of FoxP3 increased with increasing CD25 expression by CD4+ 
T cells from the highest 5% to the highest 0.5% of one healthy dog (all CD4+CD25+ T cells in this figure 
were analysed as CD45+CD5+CD8-CD4+CD25+, following a cascaded gating strategy). (b) Scatter dot plot 
summarising the increasing proportional expression of FoxP3 (mean ± SEM) among CD4+ T cells of 11 
healthy dogs, with increasing CD25 expression from the highest 5% to the highest 0.2%. (c) Summary scatter 
dot plot comparing the higher proportional expression of FoxP3 in top 1% of CD25high cells, in which gating 
was determined by the corresponding isotype control (iso) or biological negative control (bio; CD25−). No 
significant difference was found in CD25high cells between the two gating methods. Statistical significance 
in (b,c) was analysed by one-way ANOVA, followed by Dunn’s multiple comparisons test (****p < 0.0001, 
***p < 0.001, **p < 0.01, *p < 0.05).
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Freshly isolated canine CD4+CD25high t cells are suppressive in vitro. Freshly isolated 
CD4+CD25high T cells suppressed conventional CD4+CD25− T cell proliferation, as indicated by reduced cell 
divisions at a ratio of 1:1 or 1:2 in the presence of autologous monocytes (CD5-CD11b+) and ConA (Fig. 2). Our 
findings therefore confirmed the suppressive function of ex vivo canine CD4+CD25high T cells. Given their reg-
ulatory phenotype and function, we then hypothesised that canine CD4+CD25high T cells have a transcriptomic 
profile characteristic of Tregs.

Canine CD4+CD25high T cells possess the transcriptomic signature of Tregs. We conducted 
RNA-seq on freshly isolated CD4+CD25high and CD4+CD25− T cells. PCA analysis revealed distinct expression 
signatures of the two cell types (Fig. 3a). A volcano plot confirmed the distinction and suggested a Treg-like phe-
notype of CD25high T cells, which preferentially expressed nearly all of the known Treg-specific transcripts, such 
as il2ra, foxp3, ikzf2, ctla4, il10, lgals3, tigit, nrp1, lag3, icam1 and tnfrsf1843,44 (Fig. 3b).

Ingenuity pathway analysis of canine CD4+CD25high T cells. Pathway analysis further consolidated 
functional annotations of the CD25high T cell expression signature in comparison to CD25− T cells, which identi-
fied three pathways associated with development and function of Tregs to be activated, namely phospholipase C 
signalling, p38-mitogen activated protein kinase (MAPK) signalling and cell cycle regulation (Fig. 3c).

A Treg-specific expression signature is conserved in humans, mice and dogs. We compared 
Treg-specific transcriptomic signatures between species using similarity scores, which revealed a resemblance 
of canine CD4+CD25high T cells to both human and murine Tregs for the top 100 most differentially expressed 

Figure 2. CD4+CD25high T cells isolated ex vivo are suppressive in vitro. (a) Representative flow cytometric 
plots showing the proliferation of pre-labelled Tresp cells analysed in flow cytometry after a 96-hour incubation. 
Suppressor and responder cells were co-cultured at the ratio of 1:1. Tresp T cells of the four groups were gated 
following the same cascaded strategy: from live cells, to lymphocytes, to Tresp cells, followed by measurement 
via proportional proliferation. (b) Summary bar charts showing the proliferation of Tresp cells post 96-hour 
incubation (mean ± SEM), measured by means of proportional proliferation, at both 1:1 and 1:2 suppressor: 
responder ratios (five independent experiments). Statistical significance was analysed by one-way ANOVA, 
followed by Holm-Sidak’s multiple comparisons test. (c) Summary bar charts showing the percent suppression 
mediated by the suppressor population, normalised to parallel stimulated Tresp cells ((proliferating % of 
Tresp only − proliferating % of co-cultured Tresp)/(proliferating % of Tresp only) × 100 (five independent 
experiments; mean ± SEM). Statistical significance was determined by means of a paired t test (****p < 0.0001, 
***p < 0.001, **p < 0.01, *p < 0.05).
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transcripts (Fig. 4a). Of interest, human and murine Tregs showed no significant similarity (Supplementary 
Fig. S1). Thirty-one transcripts highly enriched in Tregs (FC > 2) were consensus in all three species (Fig. 4b). 
Among them, six transcripts encode the Treg signature molecules il2ra, foxp3, il10, ikzf2, lgals3, and tigit43,44. 
Thirteen transcripts, namely ccr8, ccr4, il2rb, trib1, rgs1, itgb1, ccl20, s100a4, prdm1, fas, ptger2, gata3 and ikzf4, 
are associated with development and function of Tregs44–50. The remaining 12 transcripts have not been associ-
ated with Tregs previously (Fig. 4c). Preferential expression of 11 transcripts not hitherto related to Tregs was 
confirmed by RT-qPCR, together with il2ra, foxp3 and ikzf2 as positive controls; primers for canine ptprj were 
unavailable at the time of this study, precluding confirmation of this transcript (Fig. 4d). All of the 14 transcripts 
examined by RT-qPCR showed greater expression in canine CD4+CD25high T cells compared to CD4+CD25− T 
cells, with FC values comparable to those detected by RNA-seq (Fig. 4e).

Discussion
We have shown that canine CD4+CD25high T cells isolated ex vivo have the transcriptomic signature of Tregs, recon-
ciling with their regulatory phenotype and function. Moreover, the transcriptomic signature of canine CD4+CD25high 
T cells resembled those of human and murine Tregs, consistent with our view that they represent Tregs.

Figure 3. CD4+CD25high T cells possess the transcriptomic signature of Tregs. (a) Genome-wide expression 
data of 9,476 transcripts of five CD4+CD25high and paired CD4+CD25− T cell samples isolated ex vivo from 
five healthy dogs were plotted by PCA, with the principle component 1 (PC1) of 29.8% and PC2 of 17.9%. 
(b) Expression data of differentially expressed transcripts of the same five CD4+CD25high versus paired 
CD4+CD25− T cell samples as in (a), revealed by volcano plot. Threshold line in red indicates FDR = 0.05, and 
each dot represents one transcript. Transcripts above threshold were differentially expressed, with Tregs-specific 
transcripts annotated with symbols. For better visualisation, transcript symbols were designated in upper case. 
The transcript il2ra was also designated with coordinates, owing to its striking values for FC and statistical 
significance, both off scales. (c) Stacked bar charts showing z-scores of enriched biological pathways identified 
by IPA, with red colour representing activated status. The dashed line highlights a z-score of 2; absolute 
values ≥ 2 indicate high consistency of expression direction between the input transcripts and IPA knowledge 
database. All highlighted pathways were statistically significant (p < 0.05).
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Apart from FoxP3 and other Treg signature molecules, we found that the canine CD4+CD25high T cells 
expressed transcripts encoding transcription factors specific to pro-inflammatory T helper (Th) cells in greater 
abundance than CD4+CD25− T cells. For instance, CD25high T cells preferentially expressed gata3 and irf4 of Th2 
cells51–53 and, batf, ikzf3, ikzf4 and rorα of Th17 cells54–57. A trivial explanation of this phenomenon was enrich-
ment of effector Th cells within the CD25high T cells, which were not exclusively FoxP3+ and likely to be con-
taminated by Th cells. Healthy dogs are exposed to environmental antigens at mucosal surfaces on a continuous 
basis, with subsequent polarisation of a proportion of the local T cells and escape of these cells into the peripheral 
blood. An alternative explanation was that some of the peripheral Tregs themselves expressed Th-specific tran-
scription factors, as has been previously documented25,58–62. The CD4+CD25high T cells also expressed a number 
of homing receptor transcripts at greater abundance than the CD4+CD25− T cells. For instance, CD25high T cells 
preferentially expressed Th2-associated chemokine receptor transcripts ccr3, ccr4 and ccr863–65, in line with the 

Figure 4. A Treg-specific transcriptomic signature is conserved in humans, mice and dogs. (a) Similarity 
score analysis measured the resemblance between differentially expressed transcripts of canine CD4+CD25high 
T cells with those of human and murine Tregs, on the basis of 772 consensus transcripts. Similarity score 
was calculated using the ranked top 100, 150, 200, 300, 400, 500 and 750 transcripts, respectively, with 
an accompanying p value. The dashed line indicates p = 0.05. (b) Venn diagram showing highly enriched 
transcripts (with more than two-fold preferential expression) consensus between canine CD4+CD25high T cells 
and, human and murine Tregs. (c) Stacked bar charts showing the 31 consensus transcripts conserved in all 
three species, with corresponding FC values in log2 format. Transcripts selected for RT-qPCR validation are 
highlighted in orange. (d) Scatter plots showing relative expression FC values of transcripts validated by RT-
qPCR, plotted in log2 format. The line indicates median value of the three or four sample replicates. (e) Stacked 
bar charts showing expression FC values of transcripts preferentially expressed by canine CD4+CD25high T cells 
compatible between RNA-seq and RT-qPCR detection, plotted in log2 format.
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greater expression of Th2 transcription factor transcripts gata3 and irf4. Other chemokine receptors enriched 
in canine CD25high T cells are expressed by human and murine Tregs resident in various tissues and organs, i.e. 
CXCR6 and CCR3 in adipose tissue66, CCR2, CCR5 and CXCR3 in pancreas67, CCR4 in skin68,69 and, CCR2, 
CCR5 and CCR8 in muscle70. In contrast, CD25high T cells expressed three transcripts encoding naïve T cell hom-
ing molecules CD62L (L-selectin), CCR7 and IL7R71–74 in lower abundance. Trafficking of Tregs to peripheral 
lymphoid and non-lymphoid niches is critical to their functions in homeostasis, autoimmune disease and cancer 
in humans and mice, and expression of homing receptors may vary with developmental stage and target locations 
of Tregs68,70,75–80. Single-cell RNA-seq would be required to distinguish whether these differential expression pat-
terns were attributable to contaminant Th cells or to bona fide Tregs. Nevertheless, these data raise the intriguing 
possibility of ectopic expression of Th-specific transcripts by Tregs in dogs, as in other species: for instance, 
human Tregs isolated ex vivo from healthy donors express gata3 and ccr4 of Th2 cells25, and murine Tregs incor-
porate irf4 to suppress Th2 response58.

Pathways associated with the development and function of canine Tregs were identified in our dataset. A 
cascade of signal transduction pathways is engaged upstream and downstream of FoxP3, dedicating Tregs to 
lineage-specific commitment81–88. Phospholipase C signalling is a critical transduction pathway downstream of 
TCR activation in Tregs, and its defect causes profound autoimmune lesions in mice89. The dominant medi-
ator phospholipase C produces secondary messenger molecules 1,4,5-trisphosphate (IP3) and diacylglycerol 
(DAG)90–92. IP3 activates calcium flux, which then triggers the transcription factor nuclear factor of activated T 
cells (NFAT) to interact with FoxP389,91. DAG functions in a cascade upstream of p38-MAPK signalling, which 
regulates the cell cycle and is indispensable in the induction of anergy and maintenance of Treg suppressive 
function93. The upregulation of phospholipase C, p38-MAPK and cell cycle regulation pathways in canine Tregs 
accords with these observations.

We interrogated expression signatures of Tregs across species, reasoning that similarity of transcripts would 
speak to their core function in Tregs. Canine Tregs resembled both human and murine Tregs, yielding 31 com-
mon differentially expressed transcripts. More than half of the 31 consensus transcripts encode Treg-specific 
molecules, indicative of interspecies conservation of Treg signature. Of the 12 transcripts not hitherto related 
to Tregs, hip1 has potential immunoregulatory relevance. Hip1 is a serine hydrolase protein embedded in cell 
envelopes of Mycobacterium tuberculosis, which reside intracellularly in macrophages and dendritic cells (DCs) 
of the host, evading immune responses by impeding functions of these primary APCs using Hip194–97. First, M. 
tuberculosis deactivates Toll-like receptor 2 and MyD88-dependent pathways via Hip1, reducing activation and 
cytokine production of macrophages and DCs94,96. Second, M. tuberculosis disrupts interactions between CD4+ 
T cells and APCs through GroEL2, a product of Hip1 hydrolysis95,97. Therefore, Hip1 may be another mechanism 
by which Tregs negatively modulate APCs. Fam129a and Alpha actinin-4 encoded by fam129a and actn4 inhibit 
cell apoptosis98,99, and Cathepsin Z, encoded by ctsz, promotes angiogenesis and metastasis100,101. These three 
proteins could potentially be blocked by specific mAb to attenuate the number and function of Tregs in the cancer 
microenvironment. The remaining eight transcripts are involved in T cell activation: protein products of cadm1, 
frmd4b, lmna, anxa2, galm, pou2f2, csf1 and ptprj may directly or indirectly enhance TCR signalling or interac-
tion of T cells with APCs102–109. Single cell RNA-seq would be required to further explore the significance of these 
transcripts to Tregs, along with confirmation of differential expression of their protein products and their role in 
suppressive function, if any.

In conclusion, we have characterised the phenotype, function, and transcriptomic signature of canine Tregs. 
We have delineated a core set of 31 transcripts that show differential expression by the Tregs of three mammalian 
species, including humans. More than half of these transcripts have been previously associated with Tregs in mice 
and humans. However, 12 transcripts have hitherto not been associated with Tregs in any species, prompting fur-
ther questions about their role in this cellular context. This comparative approach is a powerful tool in generating 
hypotheses that may yield fresh mechanistic insights or novel immunotherapeutic targets in this important, yet 
elusive, area of immunology.

Data Availability
Raw and processed canine RNA-seq data of this study have been deposited to Gene Expression Omnibus (GEO), 
accession number GSE132068.
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