773 research outputs found
Non-Hausdorff Symmetries of C*-algebras
Symmetry groups or groupoids of C*-algebras associated to non-Hausdorff
spaces are often non-Hausdorff as well. We describe such symmetries using
crossed modules of groupoids. We define actions of crossed modules on
C*-algebras and crossed products for such actions, and justify these
definitions with some basic general results and examples.Comment: very minor changes. To appear in Math. An
Exact Master Equation and Non-Markovian Decoherence for Quantum Dot Quantum Computing
In this article, we report the recent progress on decoherence dynamics of
electrons in quantum dot quantum computing systems using the exact master
equation we derived recently based on the Feynman-Vernon influence functional
approach. The exact master equation is valid for general nanostructure systems
coupled to multi-reservoirs with arbitrary spectral densities, temperatures and
biases. We take the double quantum dot charge qubit system as a specific
example, and discuss in details the decoherence dynamics of the charge qubit
under coherence controls. The decoherence dynamics risen from the entanglement
between the system and the environment is mainly non-Markovian. We further
discuss the decoherence of the double-dot charge qubit induced by quantum point
contact (QPC) measurement where the master equation is re-derived using the
Keldysh non-equilibrium Green function technique due to the non-linear coupling
between the charge qubit and the QPC. The non-Markovian decoherence dynamics in
the measurement processes is extensively discussed as well.Comment: 15 pages, Invited article for the special issue "Quantum Decoherence
and Entanglement" in Quantum Inf. Proces
Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes
Š 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of âź10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low Îą separation energies for neutron-deficient Mo and Tc isotopes, making the formation of ZrâNb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.Peer reviewe
Rapid Evolution and the Importance of Recombination to the Gastroenteric Pathogen Campylobacter jejuni
Responsible for the majority of bacterial gastroenteritis in the developed world, Campylobacter jejuni is a pervasive pathogen of humans and animals, but its evolution is obscure. In this paper, we exploit contemporary genetic diversity and empirical evidence to piece together the evolutionary history of C. jejuni and quantify its evolutionary potential. Our combined population geneticsâphylogenetics approach reveals a surprising picture. Campylobacter jejuni is a rapidly evolving species, subject to intense purifying selection that purges 60% of novel variation, but possessing a massive evolutionary potential. The low mutation rate is offset by a large effective population size so that a mutation at any site can occur somewhere in the population within the space of a week. Recombination has a fundamental role, generating diversity at twice the rate of de novo mutation, and facilitating gene flow between C. jejuni and its sister species Campylobacter coli. We attempt to calibrate the rate of molecular evolution in C. jejuni based solely on within-species variation. The rates we obtain are up to 1,000 times faster than conventional estimates, placing the C. jejuniâC. coli split at the time of the Neolithic revolution. We weigh the plausibility of such recent bacterial evolution against alternative explanations and discuss the evidence required to settle the issue
Interplay of Electron-Phonon Interaction and Electron Correlation in High Temperature Superconductivity
We study the electron-phonon interaction in the strongly correlated
superconducting cuprates. Two types of the electron-phonon interactions are
introduced in the model; the diagonal and off-diagonal interactions which
modify the formation energy of the Zhang-Rice singlet and its transfer
integral, respectively. The characteristic phonon-momentum and
electron-momentum dependence resulted from the off-diagonal coupling
can explain a variety of experiments. The vertex correction for the
electron-phonon interaction is formulated in the SU(2) slave-boson theory by
taking into account the collective modes in the superconducting ground states.
It is shown that the vertex correction enhances the attractive potential for
the d-wave paring mediated by phonon with around
which corresponds to the half-breathing mode of the oxygen
motion.Comment: 14 pages, 13 figure
Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes
A chromosphere is a universal attribute of stars of spectral type later than
~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae
binaries) show extended and highly turbulent chromospheres, which develop into
slow massive winds. The associated continuous mass loss has a significant
impact on stellar evolution, and thence on the chemical evolution of galaxies.
Yet despite the fundamental importance of those winds in astrophysics, the
question of their origin(s) remains unsolved. What sources heat a chromosphere?
What is the role of the chromosphere in the formation of stellar winds? This
chapter provides a review of the observational requirements and theoretical
approaches for modeling chromospheric heating and the acceleration of winds in
single cool, evolved stars and in eclipsing binary stars, including physical
models that have recently been proposed. It describes the successes that have
been achieved so far by invoking acoustic and MHD waves to provide a physical
description of plasma heating and wind acceleration, and discusses the
challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript;
accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake
(Berlin: Springer
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV
The Lambda(b) differential production cross section and the cross section
ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum
pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7
TeV using data collected by the CMS experiment at the LHC. The measurements are
based on Lambda(b) decays reconstructed in the exclusive final state J/Psi
Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and
Lambda to proton pion, using a data sample corresponding to an integrated
luminosity of 1.9 inverse femtobarns. The product of the cross section times
the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls
faster than that of b mesons. The measured value of the cross section times the
branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06
+/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for
anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are
statistical and systematic, respectively.Comment: Submitted to Physics Letters
- âŚ