2,152 research outputs found

    Dendrimer Conjugation Enhances Tumor Penetration and Cell Kill of Doxorubicin in 3D Coculture Lung Cancer Models

    Get PDF
    Background: Doxorubicin (DOX) is a potent chemotherapeutic widely used for solid tumors (1). Despite high efficacy in 2D cell culture, DOX efficacy does not translate to in vivo lung cancer models (2). Major side effects such as cardiotoxicity may be alleviated with nano-based drug delivery systems (nanoDDS). However, tumor penetration of DOX and DOX-nanoDDS is largely unknown and is an additional barrier to effective clinical therapy (3). Here we describe a nanoDDS capable of enhancing the penetration of DOX. Methods: DOX was conjugated to generation 4 poly(amido-amine) dendrimers through (GFLG) tumor- liable bond. G4SA-GFLG-DOX was synthesized/characterized. spheroids were formed of (A549) lung adenocarcinoma cells and (3T3) fibroblasts. Spheroids were characterized for ECM components with immunohistochemistry. Confocal microscopy was used to evaluate the penetration, internalization, and colocalization of DOX and G4SA-GFLG-DOX. MTT assay and Caspase 3/7 to assess 2D and 3D cytotoxicity. Flow cytometry to determine cells uptake. Results: DOX conjugation to dendrimer resulted in G4SA-GFLG-DOX with ~5.5 DOX, 10±1 nm hydrodynamic diameter, and a -17±3 mV zeta-potential. Spheroids of (A549:3T3) were ECM- rich, developed ECM containing collagen-I, hyaluronan, laminin, and fibronectin. While DOX and G4SA-GFLG-DOX had similar toxicities in 2D model, G4SA-GFLG-DOX demonstrated a 3.1-fold greater penetration into spheroids compared to DOX and correlated to a greater efficacy as measured by caspase 3/7 activity. Also, flow cytometry showed higher uptake of G4SA- GFLG-DOX in cancer cells compared to fibroblasts. Conclusion: The work demonstrates enhanced penetration of DOX, via dendrimer conjugation, into an ECM- rich 3D lung cancer model. The enhanced penetration of G4SA-GFLG-DOX correlated with greater antitumor efficacy. Acknowledgements: We acknowledge partial financial support from the Center for Pharmaceutical Engineering and Sciences - School of Pharmacy at VCU. This study was supported by VCU Quest for Distinction and NSF (DRM #1508363). Microscopy was performed at the VCU Microscopy Facility, supported, in part, by funding from NIH-NCI Cancer Center Support Grant P30 CA016059. RA would like to acknowledge King Faisal University (KFU) and Saudi Arabian Cultural Mission (SACM) for a scholarship.https://scholarscompass.vcu.edu/gradposters/1091/thumbnail.jp

    dReDBox: Materializing a full-stack rack-scale system prototype of a next-generation disaggregated datacenter

    Get PDF
    Current datacenters are based on server machines, whose mainboard and hardware components form the baseline, monolithic building block that the rest of the system software, middleware and application stack are built upon. This leads to the following limitations: (a) resource proportionality of a multi-tray system is bounded by the basic building block (mainboard), (b) resource allocation to processes or virtual machines (VMs) is bounded by the available resources within the boundary of the mainboard, leading to spare resource fragmentation and inefficiencies, and (c) upgrades must be applied to each and every server even when only a specific component needs to be upgraded. The dRedBox project (Disaggregated Recursive Datacentre-in-a-Box) addresses the above limitations, and proposes the next generation, low-power, across form-factor datacenters, departing from the paradigm of the mainboard-as-a-unit and enabling the creation of function-block-as-a-unit. Hardware-level disaggregation and software-defined wiring of resources is supported by a full-fledged Type-1 hypervisor that can execute commodity virtual machines, which communicate over a low-latency and high-throughput software-defined optical network. To evaluate its novel approach, dRedBox will demonstrate application execution in the domains of network functions virtualization, infrastructure analytics, and real-time video surveillance.This work has been supported in part by EU H2020 ICTproject dRedBox, contract #687632.Peer ReviewedPostprint (author's final draft

    The Digital Elevation Model Intercomparison eXperiment DEMIX, a community-based approach at global DEM benchmarking

    Get PDF
    This paper presents an initiative recently launched under the auspices of the Committee on Earth Observation Satellites (CEOS) aiming at providing harmonised terminology and methods, as well as practical guidelines and results allowing the intercomparison of continental or global Digital Elevation Models (DEM). As the work is still ongoing the main purpose of this article is not the dissemination of the outcome but rather to inform the wider community about the initiative, communicate the chosen approach to raise awareness, and attract possible further participants. Nevertheless, some preliminary results are included and an outlook on planned next steps is provided

    The effect of chest compression frequency on the quality of resuscitation by lifeguards. A prospective randomized crossover multicenter simulation trial

    Get PDF
    BACKGROUND: The ability to perform high-quality cardiopulmonary resuscitation is one of the basic skills for lifeguards. The aim of the study was to assess the influence of chest compression frequency on the quality of the parameters of chest compressions performed by lifeguards. METHODS: This prospective observational, randomized, crossover simulation study was performed with 40 lifeguards working in Warsaw, Wroclaw, and Poznan, Poland. The subjects then participated in a target study, in which they were asked to perform 2-min cycles of metronome-guided chest compressions at different rates: 80, 90, 100, 110, 120, 130, 140, and 150 compressions per minute (CPM). RESULTS: The study involved 40 lifeguards. Optimal chest compression score calculated by manikin software was achieved for 110-120 CPM. Chest compression depth achieved 53 (interquartile range [IQR] 52-54) mm, 56 (IQR 54-57) mm, 52.5 (IQR 50-54) mm, 53 (IQR 52-53) mm, 50 (IQR 49-51) mm, 47 (IQR 44-51) mm, 41 (IQR 40-42) mm, 38 (IQR 38-43) mm for 80, 90, 100, 110, 120, 130, 140 and 150 CPM, respectively. The percentage of chest compressions with the correct depth was lower for rates exceeding 120 CPM. CONCLUSIONS: The rate of 100-120 CPM, as recommended by international guidelines, is the optimal chest compression rate for cardiopulmonary resuscitation performed by lifeguards. A rate above 120 CPM was associated with a dramatic decrease in chest compression depth and overall chest compression quality. The role of full chest recoil should be emphasized in basic life support training

    High intensity neutrino oscillation facilities in Europe

    Get PDF
    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
    corecore