35 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Immobilization of different protein fractions from Rhizomucor miehei lipase crude extract. Enzymatic resolution of (R,S)-2-tetralol

    No full text
    The hydrolytic enzymes contained in a crude extract from Rhizomucor miehei (RML) were immobilized onto different supports. The catalytic behavior of the different enzyme derivatives in the resolution of esters of racemic 2-tetralol and structurally related secondary alcohols was investigated. We observed that, when the immobilization occurs by adsorption on highly hydrophobic solid surfaces, such as octyl-agarose or octadecyl-Sepabeads, only the lipase fraction (36 kDa) was immobilized and the resulting catalysts showed good lipasic activity and high enantioselectivity. By contrast, when immobilization was performed by ionic or covalent attachment, all proteins contained in the crude extract were immobilized and both activity and enantioselectivity were found to be much lower. The different enantioselectivity seems to be related to conformational changes of the lipase fraction (36 kDa) in the different immobilization approaches. (R)-2-Tetralol was obtained with high enantiomeric excess (89% at 50% of conversion, E = 51) by hydrolysis of the corresponding butyric acid ester using RML on octyl-agarose

    Formin Homology 2 Domain Containing 3 (FHOD3) Is a Genetic Basis for Hypertrophic Cardiomyopathy.

    Get PDF
    The genetic cause of hypertrophic cardiomyopathy remains unexplained in a substantial proportion of cases. Formin homology 2 domain containing 3 (FHOD3) may have a role in the pathogenesis of cardiac hypertrophy but has not been implicated in hypertrophic cardiomyopathy. This study sought to investigate the relation between FHOD3 mutations and the development of hypertrophic cardiomyopathy. FHOD3 was sequenced by massive parallel sequencing in 3,189 hypertrophic cardiomyopathy unrelated probands and 2,777 patients with no evidence of cardiomyopathy (disease control subjects). The authors evaluated protein-altering candidate variants in FHOD3 for cosegregation, clinical characteristics, and outcomes. The authors identified 94 candidate variants in 132 probands. The variants' frequencies were significantly higher in patients with hypertrophic cardiomyopathy (74 of 3,189 [2.32%]) than in disease control subjects (18 of 2,777 [0.65%]; p  FHOD3 is a novel disease gene in hypertrophic cardiomyopathy, accounting for approximately 1% to 2% of cases. The phenotype and the rate of cardiovascular events are similar to those reported in unselected cohorts. The FHOD3 gene should be routinely included in hypertrophic cardiomyopathy genetic testing panels

    Characteristics and outcomes of an international cohort of 600 000 hospitalized patients with COVID-19

    No full text
    Background: We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world’s largest international, standardized data sets concerning hospitalized patients. Methods: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV). Results: Data were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%. Conclusions: Age was the strongest determinant of risk of death, with a ~30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death
    corecore