215 research outputs found
Visceral fat area and cardiometabolic risk: The Kardiovize study
BACKGROUND: Visceral fat is associated with adiposity-based complications. Bioimpedance measurement allows estimation of visceral fat area (VFA) in an easy manner. However, a validated cut-off value for VFA by bioimpedance associated with cardiometabolic risk is lacking in European population. AIM: To determine cut-off values of VFA measured via bioimpedance associated with cardiometabolic risk. METHODS: Random cross-sectional Czech population-based sample of 25-64 years old subjects. Receiver Operating Characteristic (ROC) curves were used and the area under the curve (AUC), sensitivity, and specificity were calculated. The Cardiometabolic Disease Staging System (CMDS) was used to classify cardiometabolic risk: Stage 1 - 1 or 2 metabolic syndrome (MetS) components, without impaired fasting glucose (IFG); Stage 2 - MetS or IFG; Stage 3 - MetS with IFG; Stage 4 - type 2 diabetes and/or cardiovascular disease. RESULTS: 2052 participants (54.5% females, median age 49 years) were included. Median VFA (inter-quartile range) were 82.2 cm2 (54.8) in men and 89.8 cm2 (55.6) in women. The best VFA cut-offs associated with Stage 1 in men and women were 71 cm2 (sensitivity = 0.654; specificity = 0.427) and 83 cm2 (sensitivity = 0.705; specificity = 0.556) ; Stage 2: 84 cm2 (sensitivity = 0.673; specificity = 0.551) and 98 cm2 (sensitivity = 0.702; specificity = 0.628) ; Stage 3: 90 cm2 (sensitivity = 0.886; specificity = 0.605) and 109 cm2 (sensitivity = 0.755; specificity = 0.704); Stage 4: 91 cm2 (sensitivity = 0.625; specificity = 0.611) and 81 cm2 (sensitivity = 0.695; specificity = 0.448), respectively. CONCLUSION: A cut-off value of VFA of 71 cm2 in men and 83 cm2 in women exhibited the earliest stage of cardiometabolic risk, and 90 cm2 in men and 109 cm2 in women showed the best performance to detect risk
Dysglycemia and Abnormal Adiposity Drivers of Cardiometabolic-Based Chronic Disease in the Czech Population: Biological, Behavioral, and Cultural/Social Determinants of Health
In contrast to the decreasing burden related to cardiovascular disease (CVD), the burden related to dysglycemia and adiposity complications is increasing in Czechia, and local drivers must be identified. A comprehensive literature review was performed to evaluate biological, behavioral, and environmental drivers of dysglycemia and abnormal adiposity in Czechia. Additionally, the structure of the Czech healthcare system was described. The prevalence of obesity in men and diabetes in both sexes has been increasing over the past 30 years. Possible reasons include the Eastern European eating pattern, high prevalence of physical inactivity and health illiteracy, education, and income-related health inequalities. Despite the advanced healthcare system based on the compulsory insurance model with free-for-service healthcare and a wide range of health-promoting initiatives, more effective strategies to tackle the adiposity/dysglycemia are needed. In conclusion, the disease burden related to dysglycemia and adiposity in Czechia remains high but is not translated into greater CVD. This discordant relationship likely depends more on other factors, such as improvements in dyslipidemia and hypertension control. A reconceptualization of abnormal adiposity and dysglycemia into a more actionable cardiometabolic-based chronic disease model is needed to improve the approach to these conditions. This review can serve as a platform to investigate causal mechanisms and secure effective management of cardiometabolic-based chronic disease
Characterization of Lifestyle in Spinocerebellar Ataxia Type 3 and Association with Disease Severity
BACKGROUND: Lifestyle could influence the course of hereditary ataxias, but representative data are missing. OBJECTIVE: The objective of this study was to characterize lifestyle in spinocerebellar ataxia type 3 (SCA3) and investigate possible associations with disease parameters. METHODS: In a prospective cohort study, data on smoking, alcohol consumption, physical activity, physiotherapy, and body mass index (BMI) were collected from 243 patients with SCA3 and 119 controls and tested for associations with age of onset, disease severity, and progression. RESULTS: Compared with controls, patients with SCA3 were less active and consumed less alcohol. Less physical activity and alcohol abstinence were associated with more severe disease, but not with progression rates or age of onset. Smoking, BMI, or physiotherapy did not correlate with disease parameters. CONCLUSION: Differences in lifestyle factors of patients with SCA3 and controls as well as associations of lifestyle factors with disease severity are likely driven by the influence of symptoms on behavior. No association between lifestyle and disease progression was detected. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Neurofilaments in spinocerebellar ataxia type 3: blood biomarkers at the preataxic and ataxic stage in humans and mice
With molecular treatments coming into reach for spinocerebellar ataxia type 3 (SCA3), easily accessible, cross-species validated biomarkers for human and preclinical trials are warranted, particularly for the preataxic disease stage. We assessed serum levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in ataxic and preataxic subjects of two independent multicentric SCA3 cohorts and in a SCA3 knock-in mouse model. Ataxic SCA3 subjects showed increased levels of both NfL and pNfH. In preataxic subjects, NfL levels increased with proximity to the individual expected onset of ataxia, with significant NfL elevations already 7.5 years before onset. Cross-sectional NfL levels correlated with both disease severity and longitudinal disease progression. Blood NfL and pNfH increases in human SCA3 were each paralleled by similar changes in SCA3 knock-in mice, here also starting already at the presymptomatic stage, closely following ataxin-3 aggregation and preceding Purkinje cell loss in the brain. Blood neurofilaments, particularly NfL, might thus provide easily accessible, cross-species validated biomarkers in both ataxic and preataxic SCA3, associated with earliest neuropathological changes, and serve as progression, proximity-to-onset and, potentially, treatment-response markers in both human and preclinical SCA3 trials
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets
Importance Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD. / Objective To investigate what genes and genomic processes underlie the risk of sporadic PD. / Design and Setting This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks. / Main Outcomes and Measures It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. Candidate genes are presented whose change in expression, splicing, or methylation are associated with risk of PD as well as the functional pathways and cell types in which these genes have an important role. / Results Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM 618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in glial cell types compared with neurons. The weighted gene coexpression performed on the GTEx data set showed that NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell communication. Protein interactor analysis and simulations using random networks demonstrated that the candidate genes interact significantly more with known mendelian PD and parkinsonism proteins than would be expected by chance. / Conclusions and Relevance Together, these results suggest that several candidate genes and pathways are associated with the findings observed in PD GWAS studies
Identification of sixteen novel candidate genes for late onset Parkinson’s disease
Background
Parkinson’s disease (PD) is a neurodegenerative movement disorder affecting 1–5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD.
Methods
The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls).
Results
Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD.
Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10− 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD.
Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment.
Conclusions
Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment
Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at √s = 13 TeV
The performance of the missing transverse momentum (EmissT) reconstruction with the ATLAS detector is evaluated using data collected in proton–proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct EmissT, fully calibrated electrons, muons, photons, hadronically decaying τ -leptons, and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various EmissT contributions. The individual terms as well as the overall reconstructed EmissT are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the EmissT scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2 fb−1
Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at \sqrt{s}=13 TeV
This article documents the muon reconstruction and identification efficiency obtained by the ATLAS experiment for 139 \hbox {fb}^{-1} of pp collision data at \sqrt{s}=13 TeV collected between 2015 and 2018 during Run 2 of the LHC. The increased instantaneous luminosity delivered by the LHC over this period required a reoptimisation of the criteria for the identification of prompt muons. Improved and newly developed algorithms were deployed to preserve high muon identification efficiency with a low misidentification rate and good momentum resolution. The availability of large samples of Z\rightarrow \mu \mu and J/\psi \rightarrow \mu \mu decays, and the minimisation of systematic uncertainties, allows the efficiencies of criteria for muon identification, primary vertex association, and isolation to be measured with an accuracy at the per-mille level in the bulk of the phase space, and up to the percent level in complex kinematic configurations. Excellent performance is achieved over a range of transverse momenta from 3 GeV to several hundred GeV, and across the full muon detector acceptance of |\eta |<2.7
Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector
A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions
- …