41 research outputs found

    Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exosomes are nanoscale membrane vesicles released by most cells. They are postulated to be involved in cell–cell communication and genetic reprogramming of their target cells. In addition to proteins and lipids, they release RNA molecules many of which are not present in the donor cells implying a highly selective mode of their packaging into these vesicles. Sequence motifs targeting RNA to the vesicles are currently unknown.</p> <p>Results</p> <p><it>Ab initio</it> approach was applied for computational identification of potential RNA secretory motifs in the primary sequences of exosome-enriched RNAs (eRNAs). Exhaustive motif analysis for the first time revealed unique sequence features of eRNAs. We discovered multiple linear motifs specifically enriched in secreted RNAs. Their potential function as <it>cis</it>-acting elements targeting RNAs to exosomes is proposed. The motifs co-localized in the same transcripts suggesting combinatorial organization of these secretory signals. We investigated associations of the discovered motifs with other RNA parameters. Secreted RNAs were found to have almost twice shorter half-life times on average, in comparison with cytoplasmic RNAs, and the occurrence of some eRNA-specific motifs significantly correlated with this eRNA feature. Also, we found that eRNAs are highly enriched in long noncoding RNAs.</p> <p>Conclusions</p> <p>Secreted RNAs share specific sequence motifs that may potentially function as <it>cis</it>-acting elements targeting RNAs to exosomes. Discovery of these motifs will be useful for our understanding the roles of eRNAs in cell-cell communication and genetic reprogramming of the target cells. It will also facilitate nano-scale vesicle engineering and selective targeting of RNAs of interest to these vesicles for gene therapy purposes.</p

    Predicted mouse peroxisome-targeted proteins and their actual subcellular locations

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background The import of most intraperoxisomal proteins is mediated by peroxisome targeting signals at their C-termini (PTS1) or N-terminal regions (PTS2). Both signals have been integrated in subcellular location prediction programs. However their present performance, particularly of PTS2-targeting did not seem fitting for large-scale screening of sequences. Results We modified an earlier reported PTS1 screening method to identify PTS2-containing mouse candidates using a combination of computational and manual annotation. For rapid confirmation of five new PTS2- and two previously identified PTS1-containing candidates we developed the new cell line CHO-perRed which stably expresses the peroxisomal marker dsRed-PTS1. Using CHO-perRed we confirmed the peroxisomal localization of PTS1-targeted candidate Zadh2. Preliminary characterization of Zadh2 expression suggested non-PPAR&#945; mediated activation. Notably, none of the PTS2 candidates located to peroxisomes. Conclusion In a few cases the PTS may oscillate from "silent" to "functional" depending on its surface accessibility indicating the potential for context-dependent conditional subcellular sorting. Overall, PTS2-targeting predictions are unlikely to improve without generation and integration of new experimental data from location proteomics, protein structures and quantitative Pex7 PTS2 peptide binding assays

    A novel community driven software for functional enrichment analysis of extracellular vesicles data.

    Get PDF
    Bioinformatics tools are imperative for the in depth analysis of heterogeneous high-throughput data. Most of the software tools are developed by specific laboratories or groups or companies wherein they are designed to perform the required analysis for the group. However, such software tools may fail to capture "what the community needs in a tool". Here, we describe a novel community-driven approach to build a comprehensive functional enrichment analysis tool. Using the existing FunRich tool as a template, we invited researchers to request additional features and/or changes. Remarkably, with the enthusiastic participation of the community, we were able to implement 90% of the requested features. FunRich enables plugin for extracellular vesicles wherein users can download and analyse data from Vesiclepedia database. By involving researchers early through community needs software development, we believe that comprehensive analysis tools can be developed in various scientific disciplines

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Long non-coding RNAs: a potential novel class of cancer biomarkers

    Get PDF
    Long noncoding RNAs (lncRNAs) are a novel class of RNA molecules defined as transcripts longer than 200 nucleotides that lack protein coding potential. They constitute a major, but still poorly characterized part of human transcriptome, however evidence is growing that they are important regulatory molecules involved in various cellular processes. It is becoming increasingly clear that many lncRNAs are deregulated in cancer and some of them can be important drivers of malignant transformation. On the one hand, some lncRNAs can have highly specific expression in particular types of cancer making them a promising tool for diagnosis. The expression of other lncRNAs can correlate with different pathophysiological features of tumor growth and with patient survival, thus making them convenient biomarkers for prognosis. In this review we outline the current state of knowledge about the fast growing field of application of lncRNAs as tumor biomarkers

    Dual-Frequency 2D IR on Interaction of Weak and Strong IR Modes

    No full text
    Dual-frequency 2D IR heterodyne photon-echo spectroscopy of CtN and CdO stretching vibrational modes in 2-cyanocoumarin is reported. We have shown that the interaction among these modes provides convenient and useful structural constraints for molecules. Implementation of two pulse sequences, 4, 4, and 6 µm and 6, 6, and 4 µm, allowed the clear determination of contributions caused by vibrational relaxation. Positive correlation between CtN and CdO frequency distributions was observed in 2-cyanocoumarin. Because Ct N modes are highly localized and have frequencies in a spectral region with minimal water absorption, the CtN/CdO interactions have a strong potential for use as structural reporters in proteins. In addition to CN/ CO peaks, the cross-peaks responsible for the CtN/CdC interaction are also observed in the 2D IR spectra, where CdC is a coumarin ring stretching mode. We have demonstrated that 2D IR spectroscopy can utilize interactions of strong IR modes with weak local modes as structural reporters

    Toward Allosterically Increased Catalytic Activity of Insulin-Degrading Enzyme against Amyloid Peptides

    No full text
    The physiological role of insulin-degrading enzyme (IDE) in the intracytosolic clearance of amyloid β (Aβ) and other amyloid-like peptides supports a hypothesis that human IDE hyperactivation could be therapeutically beneficial for the treatment of late-onset Alzheimer’s disease (AD). The major challenge standing in the way of this goal is increasing the specific catalytic activity of IDE against the Aβ substrate. There were previous indications that the allosteric mode of IDE activity regulation could potentially provide a highly specific path toward degradation of amyloid-like peptides, while not dramatically affecting activity against other substrates. Recently developed theoretical concepts are used here to explore potential allosteric modulation of the IDE activity as a result of single-residue mutations. Five candidates are selected for experimental follow-up and allosteric free energy calculations: Ser137Ala, Lys396Ala, Asp426Ala, Phe807Ala, and Lys898Ala. Our experiments show that three mutations (Ser137Ala, Phe807Ala, and Lys898Ala) decrease the <i>K</i><sub>m</sub> of the Aβ substrate. Mutation Lys898Ala results in increased catalytic activity of IDE; on the other hand, Lys364Ala does not change the activity and Asp426Ala diminishes it. Quantifying effects of mutations in terms of allosteric free energy, we show that favorable mutations lead to stabilization of the catalytic sites and other function-relevant distal sites as well as increased dynamics of the IDE-N and IDE-C halves that allow efficient substrate entrance and cleavage. A possibility for intramolecular upregulation of IDE activity against amyloid peptides via allosteric mutations calls for further investigations in this direction. Ultimately, we are hopeful it will lead to the development of IDE-based drugs for the treatment of the late-onset form of AD characterized by an overall impairment of Aβ clearance
    corecore