113 research outputs found

    Growth Hormone Receptor Signaling Pathways and its Negative Regulation by SOCS2

    Get PDF
    Growth hormone (GH) is a critical regulator of linear body growth during childhood but continues to have important metabolic actions throughout life. The GH receptor (GHR) is ubiquitously expressed, and deficiency of GHR signaling causes a dramatic impact on normal physiology during somatic development, adulthood, and aging. GHR belongs to a family of receptors without intrinsic kinase activity. However, GH binding to homodimers of GHR results in a conformational change in the receptors and the associated tyrosine kinase Janus kinase 2 (JAK2) molecules. Activated JAK2 phosphorylates the GHR cytoplasmic domain on tyrosine residues, and subsequent JAK2-dependent and JAK2-independent intracellular signal transduction pathways evoke cell responses including changes in gene transcription, proliferation, cytoskeletal reorganization, and lipid and glucose metabolism. JAK2 phosphorylates STAT5b, which is a key transcription factor in GH regulation of target genes associated with body growth, intermediate metabolism, and gender dimorphism; although STAT1, 3, and 5a have also been shown to be recruited by the GHR. In addition, many transcripts are regulated independently of STAT5b as a result of GHR activation of Src, ERK, and PI3K-mTOR signaling pathways. The analysis of molecular mechanisms involved in inactivation of GHR-dependent signaling pathway is also imperative for understanding GH physiology. This is clearly illustrated in the case of hepatic GHR-JAK2-STAT5b activation where signal duration regulates gender differences in liver gene expression. An early step in the termination of GH-dependent signaling is removal of GHRs by endocytosis and ubiquitination. The level of ubiquitin ligase SOCS2 is constitutively low, but its expression is rapidly induced by GH. SOCS2 binding to GHR complex promotes their ubiquitination and subsequent proteasomal degradation, contributing to the termination of the GH intracellular signaling. Clinically relevant, SOCS2 is a key negative regulator of GH-dependent body growth and lipid and glucose homeostasis. Furthermore, several cytokines, growth factors, xenobiotics, and sex hormones can regulate SOCS2 protein level, which provides a mechanism for cross-talking where multiple factors can regulate GHR signaling during somatic development. A better understanding of this complex regulation in physiological and pathological states will contribute to prevent health damage and improve clinical management of patients with growth and metabolic disorders

    Árbore da Veira

    Get PDF
    “Veira: más allá de los fogones” es una pieza de género documental que nos transporta al universo culinario del restaurante Árbore da Veira y abre una ventana que deja conocer la personalidad del chef Luis Veira. Esta memoria describe las fases de pre-producción, producción y post-producción que se han llevado a cabo hasta lograr el resultado final. Este documental forma parte de un proyecto de docuserie que constaría de varios episodios. "Árbore da veira" es el piloto del mismo.Traballo fin de grao (UDC.COM). Comunicación audiovisual. Curso 2020/202

    The ubiquitin ligase Cullin5<sup>SOCS2</sup> regulates NDR1/STK38 stability and NF-κB transactivation

    No full text
    SOCS2 is a pleiotropic E3 ligase. Its deficiency is associated with gigantism and organismal lethality upon inflammatory challenge. However, mechanistic understanding of SOCS2 function is dismal due to our unawareness of its protein substrates. We performed a mass spectrometry based proteomic profiling upon SOCS2 depletion and yield quantitative data for ~4200 proteins. Through this screen we identify a novel target of SOCS2, the serine-threonine kinase NDR1. Over-expression of SOCS2 accelerates turnover, while its knockdown stabilizes, endogenous NDR1 protein. SOCS2 interacts with NDR1 and promotes its degradation through K48-linked ubiquitination. Functionally, over-expression of SOCS2 antagonizes NDR1-induced TNFα-stimulated NF-κB activity. Conversely, depletion of NDR1 rescues the effect of SOCS2-deficiency on TNFα-induced NF-κB transactivation. Using a SOCS2(−/−) mice model of colitis we show that SOCS2-deficiency is pro-inflammatory and negatively correlates with NDR1 and nuclear p65 levels. Lastly, we provide evidence to suggest that NDR1 acts as an oncogene in prostate cancer. To the best of our knowledge, this is the first report of an identified E3 ligase for NDR1. These results might explain how SOCS2-deficiency leads to hyper-activation of NF-κB and downstream pathological implications and posits that SOCS2 induced degradation of NDR1 may act as a switch in restricting TNFα-NF-κB pathway

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae

    Full text link
    corecore