137 research outputs found

    Deciding what to replicate: a decision model for replication study selection under resource and knowledge constraints

    Get PDF
    Robust scientific knowledge is contingent upon replication of original findings. However, replicating researchers are constrained by resources, and will almost always have to choose one replication effort to focus on from a set of potential candidates. To select a candidate efficiently in these cases, we need methods for deciding which out of all candidates considered would be the most useful to replicate, given some overall goal researchers wish to achieve. In this article we assume that the overall goal researchers wish to achieve is to maximize the utility gained by conducting the replication study. We then propose a general rule for study selection in replication research based on the replication value of the set of claims considered for replication. The replication value of a claim is defined as the maximum expected utility we could gain by conducting a replication of the claim, and is a function of (a) the value of being certain about the claim, and (b) uncertainty about the claim based on current evidence. We formalize this definition in terms of a causal decision model, utilizing concepts from decision theory and causal graph modeling. We discuss the validity of using replication value as a measure of expected utility gain, and we suggest approaches for deriving quantitative estimates of replication value. Our goal in this article is not to define concrete guidelines for study selection, but to provide the necessary theoretical foundations on which such concrete guidelines could be built.Translational Abstract Replication-redoing a study using the same procedures-is an important part of checking the robustness of claims in the psychological literature. The practice of replicating original studies has been woefully devalued for many years, but this is now changing. Recent calls for improving the quality of research in psychology has generated a surge of interest in funding, conducting, and publishing replication studies. Because many studies have never been replicated, and researchers have limited time and money to perform replication studies, researchers must decide which studies are the most important to replicate. This way scientists learn the most, given limited resources. In this article, we lay out what it means to think about what is the most important thing to replicate, and we propose a general decision rule for picking a study to replicate. That rule depends on a concept we call replication value. Replication value is a function of the importance of the study, and how uncertain we are about the findings. In this article we explain how researchers can think precisely about the value of replication studies. We then discuss when and how it makes sense to use replication value as a measure of how valuable a replication study would be, and we discuss factors that funders, journals, or scientists could consider when determining how valuable a replication study is.Multivariate analysis of psychological dat

    The Process of Replication Target Selection in Psychology: What to Consider?

    Get PDF
    Increased execution of replication studies contributes to the effort to restore credibility of empirical research. However, a second generation of problems arises: the number of potential replication targets is at a serious mismatch with available resources. Given limited resources, replication target selection should be well justified, systematic, and transparently communicated. At present the discussion on what to consider when selecting a replication target is limited to theoretical discussion, self-reported justifications, and a few formalized suggestions. In this Registered Report, we proposed a study involving the scientific community to create a list of considerations for consultation when selecting a replication target in psychology. We employed a modified Delphi approach. First, we constructed a preliminary list of considerations. Second, we surveyed psychologists who previously selected a replication target with regards to their considerations. Third, we incorporated the results into the preliminary list of considerations and sent the updated list to a group of individuals knowledgeable about concerns regarding replication target selection. Over the course of several rounds, we established consensus regarding what to consider when selecting a replication target

    Variability in the analysis of a single neuroimaging dataset by many teams

    Get PDF
    Data analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante hypotheses. The flexibility of analytic approaches is exemplified by the fact that no two teams chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in hypothesis test results, even for teams whose statistical maps were highly correlated at intermediate stages of their analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Importantly, meta-analytic approaches that aggregated information across teams yielded significant consensus in activated regions across teams. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset. Our findings show that analytic flexibility can have substantial effects on scientific conclusions, and demonstrate factors related to variability in fMRI. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for multiple analyses of the same data. Potential approaches to mitigate issues related to analytical variability are discussed

    Variability in the analysis of a single neuroimaging dataset by many teams

    Get PDF
    Data analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante hypotheses. The flexibility of analytic approaches is exemplified by the fact that no two teams chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in hypothesis test results, even for teams whose statistical maps were highly correlated at intermediate stages of their analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Importantly, meta-analytic approaches that aggregated information across teams yielded significant consensus in activated regions across teams. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset. Our findings show that analytic flexibility can have substantial effects on scientific conclusions, and demonstrate factors related to variability in fMRI. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for multiple analyses of the same data. Potential approaches to mitigate issues related to analytical variability are discussed

    Justify your alpha

    Get PDF
    Benjamin et al. proposed changing the conventional “statistical significance” threshold (i.e.,the alpha level) from p ≤ .05 to p ≤ .005 for all novel claims with relatively low prior odds. They provided two arguments for why lowering the significance threshold would “immediately improve the reproducibility of scientific research.” First, a p-value near .05provides weak evidence for the alternative hypothesis. Second, under certain assumptions, an alpha of .05 leads to high false positive report probabilities (FPRP2 ; the probability that a significant finding is a false positive

    The Psychological Science Accelerator: Advancing Psychology Through a Distributed Collaborative Network

    Get PDF
    Source at https://doi.org/10.1177/2515245918797607.Concerns about the veracity of psychological research have been growing. Many findings in psychological science are based on studies with insufficient statistical power and nonrepresentative samples, or may otherwise be limited to specific, ungeneralizable settings or populations. Crowdsourced research, a type of large-scale collaboration in which one or more research projects are conducted across multiple lab sites, offers a pragmatic solution to these and other current methodological challenges. The Psychological Science Accelerator (PSA) is a distributed network of laboratories designed to enable and support crowdsourced research projects. These projects can focus on novel research questions or replicate prior research in large, diverse samples. The PSA’s mission is to accelerate the accumulation of reliable and generalizable evidence in psychological science. Here, we describe the background, structure, principles, procedures, benefits, and challenges of the PSA. In contrast to other crowdsourced research networks, the PSA is ongoing (as opposed to time limited), efficient (in that structures and principles are reused for different projects), decentralized, diverse (in both subjects and researchers), and inclusive (of proposals, contributions, and other relevant input from anyone inside or outside the network). The PSA and other approaches to crowdsourced psychological science will advance understanding of mental processes and behaviors by enabling rigorous research and systematic examination of its generalizability

    The process of replication target selection in psychology: what to consider?

    Get PDF
    Increased execution of replication studies contributes to the effort to restore credibility of empirical research. However, a second generation of problems arises: the number of potential replication targets is at a serious mismatch with available resources. Given limited resources, replication target selection should be well-justified, systematic and transparently communicated. At present the discussion on what to consider when selecting a replication target is limited to theoretical discussion, self-reported justifications and a few formalized suggestions. In this Registered Report, we proposed a study involving the scientific community to create a list of considerations for consultation when selecting a replication target in psychology. We employed a modified Delphi approach. First, we constructed a preliminary list of considerations. Second, we surveyed psychologists who previously selected a replication target with regards to their considerations. Third, we incorporated the results into the preliminary list of considerations and sent the updated list to a group of individuals knowledgeable about concerns regarding replication target selection. Over the course of several rounds, we established consensus regarding what to consider when selecting a replication target. The resulting checklist can be used for transparently communicating the rationale for selecting studies for replication

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    The Psychological Science Accelerator's COVID-19 rapid-response dataset

    Get PDF
    corecore