150 research outputs found

    Biochemical and structural studies of a L-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii

    Get PDF
    addresses: Henry Wellcome Building for Biocatalysis, School of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.types: Journal Article; Research Support, Non-U.S. Gov'tThis a post-print, author-produced version of an article accepted for publication in Extremophiles. Copyright © 2009 Springer Verlag. The definitive version is available at http://link.springer.com/article/10.1007%2Fs00792-008-0208-0Haloacid dehalogenases have potential applications in the pharmaceutical and fine chemical industry as well as in the remediation of contaminated land. The L: -2-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii has been cloned and over-expressed in Escherichia coli and successfully purified to homogeneity. Here we report the structure of the recombinant dehalogenase solved by molecular replacement in two different crystal forms. The enzyme is a homodimer with each monomer being composed of a core-domain of a beta-sheet bundle surrounded by alpha-helices and an alpha-helical sub-domain. This fold is similar to previously solved mesophilic L: -haloacid dehalogenase structures. The monoclinic crystal form contains a putative inhibitor L: -lactate in the active site. The enzyme displays haloacid dehalogenase activity towards carboxylic acids with the halide attached at the C2 position with the highest activity towards chloropropionic acid. The enzyme is thermostable with maximum activity at 60 degrees C and a half-life of over 1 h at 70 degrees C. The enzyme is relatively stable to solvents with 25% activity lost when incubated for 1 h in 20% v/v DMSO

    Quantum Measurement Theory in Gravitational-Wave Detectors

    Get PDF
    The fast progress in improving the sensitivity of the gravitational-wave (GW) detectors, we all have witnessed in the recent years, has propelled the scientific community to the point, when quantum behaviour of such immense measurement devices as kilometer-long interferometers starts to matter. The time, when their sensitivity will be mainly limited by the quantum noise of light is round the corner, and finding the ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of Standard Quantum Limit and the methods of its surmounting.Comment: 147 pages, 46 figures, 1 table. Published in Living Reviews in Relativit

    Sputum and nasal lavage lung-specific biomarkers before and after smoking cessation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the effect of smoking cessation on airway inflammation. Secretory Leukocyte Protease Inhibitor (SLPI), Clara Cell protein 16 (CC16), elafin and human defensin beta-2 (HBD-2) protect human airways against inflammation and oxidative stress. In this longitudinal study we aimed to investigate changes in sputum and nasal lavage SLPI, CC16, elafin and HBD-2 levels in healthy smokers after 6 and 12 months of smoking cessation.</p> <p>Methods</p> <p>Induced sputum and nasal lavage was obtained from healthy current smokers (n = 76) before smoking cessation, after 6 months of smoking cessation (n = 29), after 1 year of smoking cessation (n = 22) and from 10 healthy never smokers. SLPI, CC16, elafin and HBD-2 levels were measured in sputum and nasal lavage supernatants by commercially available ELISA kits.</p> <p>Results</p> <p>Sputum SLPI and CC-16 levels were increased in healthy smokers before smoking cessation versus never-smokers (p = 0.005 and p = 0.08 respectively). SLPI and CC16 levels did not differ before and 6 months after smoking cessation (p = 0.118 and p = 0.543 respectively), neither before and 1 year after smoking cessation (p = 0.363 and p = 0.470 respectively). Nasal lavage SLPI was decreased 12 months after smoking cessation (p = 0.033). Nasal lavage elafin levels were increased in healthy smokers before smoking cessation versus never-smokers (p = 0.007), but there were no changes 6 months and 1 year after smoking cessation.</p> <p>Conclusions</p> <p>Only nasal lavage SLPI decrease after 1 year after smoking cessation. We may speculate that there is an ongoing inflammatory process stimulating the production of counter-regulating proteins in the airways of healthy ex-smokers.</p

    Characterizing Protein-Protein Interactions with the Fragment Molecular Orbital Method

    Get PDF
    Proteins are vital components of living systems, serving as building blocks, molecular machines, enzymes, receptors, ion channels, sensors, and transporters. Protein-protein interactions (PPIs) are a key part of their function. There are more than 645,000 reported disease-relevant PPIs in the human interactome, but drugs have been developed for only 2% of these targets. The advances in PPI-focused drug discovery are highly dependent on the availability of structural data and accurate computational tools for analysis of this data. Quantum mechanical approaches are often too expensive computationally, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed and the ability to reveal key interactions that would otherwise be hard to detect. FMO provides essential information for PPI drug discovery, namely, identification of key interactions formed between residues of two proteins, including their strength (in kcal/mol) and their chemical nature (electrostatic or hydrophobic). In this chapter, we have demonstrated how three different FMO-based approaches (pair interaction energy analysis (PIE analysis), subsystem analysis (SA) and analysis of protein residue networks (PRNs)) have been applied to study PPI in three protein-protein complexes

    Cigarette smoke and lipopolysaccharide induce a proliferative airway smooth muscle phenotype

    Get PDF
    Background: A major feature of chronic obstructive pulmonary disease (COPD) is airway remodelling, which includes an increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodelling in COPD are currently unknown. We hypothesized that cigarette smoke (CS) and/or lipopolysaccharide (LPS), a major constituent of CS, organic dust and gram-negative bacteria, that may be involved in recurrent airway infections and exacerbations in COPD patients, would induce phenotype changes of ASM. Methods: To this aim, using cultured bovine tracheal smooth muscle (BTSM) cells and tissue, we investigated the direct effects of CS extract (CSE) and LPS on ASM proliferation and contractility. Results: Both CSE and LPS induced a profound and concentration-dependent increase in DNA synthesis in BTSM cells. CSE and LPS also induced a significant increase in BTSM cell number, which was associated with increased cyclin D1 expression and dependent on activation of ERK 1/2 and p38 MAP kinase. Consistent with a shift to a more proliferative phenotype, prolonged treatment of BTSM strips with CSE or LPS significantly decreased maximal methacholine- and KCl-induced contraction. Conclusions: Direct exposure of ASM to CSE or LPS causes the induction of a proliferative, hypocontractile ASM phenotype, which may be involved in airway remodelling in COPD

    Metabolic constituents of grapevine and grape-derived products

    Get PDF
    The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
    • 

    corecore