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Abstract

The computation of the Greatest Common Divisor (GCD) of a set
of polynomials is an important issue in computational mathematics and
it is linked to Control Theory very strong. In this paper we present
different matrix-based methods, which are developed for the efficient
computation of the GCD of several polynomials. Some of these meth-
ods are naturally developed for dealing with numerical inaccuracies in
the input data and produce meaningful approximate results. There-
fore, we describe and compare numerically and symbolically methods
such as the ERES, the Matrix Pencil and other resultant type methods,
with respect to their complexity and effectiveness. The combination
of numerical and symbolic operations suggests a new approach in soft-
ware mathematical computations denoted as hybrid computations. This
combination offers great advantages, especially when we are interested
in finding approximate solutions. Finally the notion of approximate
GCD is discussed and a useful criterion estimating the strength of a
given approximate GCD is also developed.
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1. Introduction

The problem of finding the greatest common divisor (GCD) of a poly-
nomial set has been a subject of interest for a very long time and has
widespread applications. Since the existence of a nontrivial common
divisor of polynomials is a property that holds for specific sets, extra
care is needed in the development of efficient numerical algorithms cal-
culating correctly the required GCD. Several numerical methods for the
computation of the GCD of a set Pm,n, of m polynomials of ℜ[s] of max-
imal degree n, have been proposed, [2–4, 11, 20, 24, 27, 29, 31, 33, 37]
and references therein. These methods can be classified as :

(i) Numerical methods based on Euclid’s algorithm and its general-
izations.

(ii) Numerical methods based on procedures involving matrices (ma-
trix based methods).
The methods that are based on Euclid’s algorithm, are designed for
processing two polynomials and they are applied iteratively for sets of
more than two polynomials. On the other hand, the matrix-based meth-
ods usually perform specific transformations to a matrix formed directly
from the coefficients of the polynomials of the entire given set.

The GCD has a significant role in Control Theory [15, 32]. A number
of important invariants for Linear Systems rely on the notion of Greatest
Common Divisor (GCD) of several polynomials. In fact, it is instrumen-
tal in defining system notions such as zeros, decoupling zeros, zeros at
infinity or notions of Minimality of system representations. On the other
hand, Systems and Control Methods provide concepts and tools, which
enable the development of new computational procedures for GCD [16].

The existence of certain types and/or values of invariants and sys-
tem properties may be classified as generic or nongeneric on a family
of linear models. Numerical computations dealing with the derivation
of an approximate value of a property, function, which is nongeneric
on a given model set, will be called nongeneric computations (NGC)
[16]. Computational procedures aiming at defining the generic value of
a property, function on a given model set (if such values exists), will
be called generic (GC). On a set of polynomials with coefficients taking
values from a certain parameter set, the existence of GCD is nongeneric
[14, 36]; numerical procedures that aim to produce an approximate non-
trivial value by exploring the numerical properties of the parameter set
are typical examples of NGC computations and approximate GCD pro-
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cedures will be considered subsequently. NG computations refer to both
continuous and discrete type system invariants. The various techniques,
which have been developed for the computation of approximate solu-
tions of GCD [27, 19] and LCM (Least Common Multiple) [16, 21, 22],
are based on methodologies where exact properties of these notions are
relaxed and appropriate solutions are sought using a variety of numerical
tests.

The development of a methodology for robust computation of non-
generic algebraic invariants, or nongeneric values of generic ones, has as
prerequisites:

(a) The development of a numerical linear algebra characterization of
the invariants, which may allow the measurement of degree of presence
of the property on every point of the parameter set.

(b) The development of special numerical tools, which avoid the in-
troduction of additional errors.

(c) The formulation of appropriate criteria which, allow the termi-
nation of algorithms at certain steps and the definition of meaningful
approximate solutions to the algebraic computation problem.

It is clear that the formulation of the algebraic problem as an equiv-
alent numerical linear algebra problem, is essential in transforming con-
cepts of algebraic nature to equivalent concepts of analytic character and
thus setup up the right framework for approximations.

A major challenge for the control theoretic applications of the GCD is
that frequently we have to deal with a very large number of polynomials.
It is this requirement that makes the pairwise type approaches for GCD
[1, 24, 29, 37] not suitable for such applications [33]. However, because
of the use of the entire set of polynomials, matrix-based methods tend to
have better performance and quite good numerical stability, especially
in the case of large sets of polynomials [2–4, 10, 20, 27].

The study of the invariance properties of the GCD [18] led to the
development of the ERES method [27], which performs extensive row
operations and shifting on a matrix formed directly from the coefficients
of the polynomials. The ERES method has also introduced for the first
time a systematic procedure for computing approximate GCDs [19] for
a set of polynomials and extends the previously defined notion of almost
zeros [17]. The notion of almost zeros is linked to the approximate GCD
problem [19] and it is based on a relaxation of the exact notion of a zero.

Another algorithm for the GCD computation based on Systems The-
ory and Matrix Pencils, was introduced in 1994, [20], and a variant using
generalized resultant matrices was presented in 2006 [23].

The implementation of matrix-based methods computing the GCD
in a programming environment often needs a careful selection of the
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proper arithmetic system. Most modern mathematical software pack-
ages use variable floating-point or exact symbolic arithmetic. If sym-
bolic arithmetic is used, the results are always accurate, but the time
of execution of the algorithms can be prohibitively high. In variable
precision floating-point arithmetic the internal accuracy of the system
can be determined by the user. Variable precision operations are faster
and more economical in memory bytes than symbolic operations, but
if we increase the number of digits of the system’s accuracy, the time
and memory requirements will also increase. An alternative approach is
to combine symbolic with floating-point operations of enough digits of
accuracy in an appropriate way. Such combination will be referred as
Hybrid Computations. This technique often improves the performance
of the matrix based algorithms.

In the following, we will be mainly concerned with the performance of
the ERES, Matrix Pencil, and Resultant ERE methods in a numerical-
symbolical computational environment. Also, a useful indicator for the
quality of the GCD, known as the strength of an approximate GCD [19],
is described.

2. The ERES, Resultant ERE (RERE) and
Modified RERE (MRERE) Methods

In this section, we present the description of the two methods for com-
puting the GCD of several polynomials using Extended Row Equivalence
(ERE) [16]. Their corresponding algorithms are tested and compared
thoroughly and representative examples are given in tables.

Suppose that we have a set of m polynomials :

Pm,n =
{

a(s), bi(s) ∈ ℜ[s], i = 1, 2, . . . ,m − 1 with

n = deg{a(s)} and p = max
1≤i≤m−1

{
deg{bi(s)}

}
≤ n

}

with the following form :

a(s) = ansn + an−1 sn−1 + . . . + a1 s + a0

bi(s) = bi,n sp + bi,n−1 sp−1 + . . . + bi,n−p+1 s + bi,n−p

for i = 1, 2, . . . ,m − 1

and suppose that there is at least one i : bi,n 6= 0 but bi,j = 0 for
j > n − p ∀i, [2].
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For any Pm,n set, we define a vector representative (vr) p
m

(s) and a
basis matrix Pm represented as :

p
m

(s) = [a(s), b1(s), . . . , bm−1(s)]
t (1.1a)

= [p
0
, p

1
, . . . , p

n−1
, p

n
] · en(s) = Pm · en(s) (1.1b)

where Pm ∈ ℜm×(n+1), en(s) = [1, s, . . . , sn−1, sn]t.
The basis matrix Pm is formed directly from the coefficients of the

polynomials of the set.
Additionally, for any vector of the form:

rt = [0, . . . , 0, ak, . . . , ad] ∈ ℜd, ak 6= 0

we define the Shifting operation

shf : shf(rt) = [ak, . . . , ad, 0, . . . , 0] ∈ ℜd

In the following, without loss of generality, we suppose that the GCD
of a given set of polynomials has no zero roots.

2.1 The ERES Method

The ERES method is an iterative matrix based method, which is
based on the properties of the GCD as an invariant of the original set
of polynomials under extended-row-equivalence and shifting operations
[18]. The algorithm of the ERES method [27], [28] is based on stable
algebraic processes, such as Gaussian elimination with partial pivoting
scaling, normalization and Singular Value Decomposition, which are ap-
plied iteratively on a basis matrix formed directly from the coefficients
of the polynomials of the original set. Thus, the ERES algorithm works
with all the polynomials of a given set simultaneously. The main target
of the ERES algorithm is to reduce the number of the rows of the initial
matrix and finally to end up to a unity rank matrix, which contains the
coefficients of the GCD. The Singular Value Decomposition provides the
ERES algorithm with a termination criterion. The performance of the
algorithm is better [5] if we perform hybrid computations. The following
algorithm corresponds to an implementation of the ERES method in a
hybrid computational environment.

2.1.1 The ERES Algorithm.

– Form the basis matrix Pm ∈ ℜm×(n+1).
– Convert the elements of Pm to a rational format :

P
(0)
m := convert(Pm, rational)
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– Initialize k := −1.

Repeat
k := k + 1

STEP 1: Let r := the row dimension of P
(k)
m .

Specify the degree di of each polynomial row.

Reorder matrix P
(k)
m : di−1 ≤ di, i = 2, . . . , r.

If d1 = d2 = . . . = dr then

Convert the elements of P
(k)
m to a floating-point format:

P
(F )
m := convert(P

(k)
m , float)

Normalize the rows of P
(F )
m using norm-2 :

P
(N)
m := Normalize(P

(F )
m )

Compute the Singular Value Decomposition :

P
(N)
m := V Σ W t, Σ = diag{σ1, . . . , σr},

σ1 > σ2 ≥ . . . ≥ σr and W t = [w1, . . . , wn+1]
t

If εt-rank(P
(N)
m ) = 1 then

Select the GCD vector g.

( g := wt
1 or g := any row of P

(k)
m )

quit

STEP 2: Scale properly matrix P
(k)
m .

Apply Gaussian elimination with partial pivoting to P
(k)
m .

STEP 3: Apply shifting on every row of P
(k)
m .

Delete the zero rows and columns.
until r = 1

The ERES algorithm produces either a single row-vector or a unity
rank matrix. The main advantage of this algorithm is the reduction of
the size of the original matrix during the iterations, which leads to fast
data processing and low memory consumption.

2.1.2 Complexity. For a set of m polynomials the amount of
floating point operations performed in the kth iteration of the algorithm

depends on the size of the matrix P
(k)
m . If the size of P

(k)
m is m′×n′, the

ERES algorithm requires O( z3

3 ), z = min{m′ − 1, n′} operations for the
Gaussian elimination, O(2m′n′) operations for the normalization and

O(m′n′2 + n′3) for the SVD process. The first iteration is the most

computationally expensive iteration since the initial matrix P
(0)
m has

larger dimensions than any P
(k)
m . Unless we know exactly the degree

of the GCD of the set we cannot specify from the beginning the number
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of iterations required by the algorithm. Therefore, we cannot express
a general formula for calculating the total number of operations, which
are required by the algorithm.

2.1.3 Behavior and stability of the ERES algorithm. The
combination of rational and numerical operations aims at the improve-
ment of the stability of the ERES algorithm and the presence of good
approximate solutions. The main iterative procedure of the algorithm
and especially the process of Gaussian elimination, is entirely performed
by using rational operations. With this technique any additional errors
from the Gaussian elimination are avoided. The operations during the
Gaussian elimination are always performed accurately and if the input
data are exactly known and a GCD exists, the output of the algorithm
is produced accurately from any row of the final unity rank matrix. Ob-
viously, rational operations do not reveal the presence of approximate
solutions. In cases of sets of polynomials with inexact coefficients, the
presence of an approximate solution relies on the proper determination
of a numerical εt-rank 1 matrix for a specific accuracy εt. Therefore, the
singular value decomposition together with the normalization process of

the matrix P
(k)
m are performed by using floating-point operations. The

polynomial that comes from the right singular vector that corresponds
to the unique singular value of the last unity rank matrix, can be con-
sidered as a GCD approximation and represents the numerical output
of the ERES algorithm.

The normalization of the rows of any matrix P
(k)
m (by the Euclidean

norm) does not introduce significant errors and in fact the following
result can be proved [27]:

Proposition 1.1 The normalization P
(N)
m of a matrix P

(k)
m ∈ ℜm′×n′

,
computed by the method in the kth iteration, using floating-point arith-
metic with unit round-off u, satisfies the properties

P (N)
m = N · P (k)

m + EN , ‖EN‖∞ ≤ 3.003 · n′ · u

where N ∈ ℜm′×m′

= diag(d1, d2, . . . , dm′), di =
(∥∥∥P

(k)
m [i, 1 . . . n′]

∥∥∥
2

)−1
,

i = 1, . . . ,m′ the matrix accounting for the performed transformations
and EN ∈ ℜm′×n′

the error matrix.

It is important to notice that the SVD is actually applied to a nu-

merical copy of the matrix P
(k)
m and thus the performed transformations

during the SVD procedure do not affect the matrix P
(k)
m when returning

to the main iterative procedure. For this reason, there is no accumulation
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of numerical errors. The only errors appearing are from the normaliza-

tion and the singular value decomposition [8, 12] of the last matrix P
(F )
m

and represent the total numerical error1 of the ERES algorithm.
The combination of rational-symbolic and floating-point operations

ensures the stability of the algorithm and gives to the ERES the char-
acteristics of a hybrid computational method.

2.2 The Resultant ERE (RERE) and Modified
ERE (MRERE) Methods

Another method to compute the GCD of several polynomials is to tri-
angularize the generalized Sylvester matrix S [2], which has the following
form:

S =




S0

S1
...

Sm




where the block Si, i = 1, . . . ,m represents the Sylvester matrix of the
i-th polynomial. In [6] we have modified the huge initial generalized
Sylvester matrix in order to take advantage of its special form and mod-
ifying the classical procedures (such as SVD, QR and LU factorization)
we reduce the required floating point operations from O(n4) to O(n3)
flops making the algorithms efficient. More specifically the application
of Householder or Gaussian transformations to the modified general-
ized Sylvester matrix requires only O((n + p)3(2log2(n) − 1

3) + (n +
p)2(2mlog2(n) + p)) flops and in the worse case where m = n = p the
required flops will be equal to O(16log2(n) · n3) or the half flops for the
LU factorization respectively. In practice the flops that demand the pre-
vious methods are less because of the linear dependent rows which are
zeroed and deleted during the triangularization of the matrix.

2.2.1 Numerical Stability. In [6] we proved that the final

error matrix in the modified QR method is E =
∑log2(n)

i=1 Ei with

‖ E ‖F≤ φ(n)µ
√

n + p(‖ S∗ ‖F + ‖ ((S∗)
′

) ‖F ) (1.2)

where ((S∗)
′

) is the last triangularized sub-matrix, φ a slowly growing
function of n and µ the machine precision and the final error in the
modified LU method is

E =

log2(n)∑

i=1

Ei (1.3)
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with ‖ E ‖∞≤ (n+p)[log2n]pu ‖ S∗ ‖∞ +(n+p)2pu ‖ ((S∗)
′

) ‖∞), where
p is the growth factor and u the unit round off.

3. The Matrix Pencil Methods

3.1 The Standard Matrix Pencil Method (SMP)

The matrix pencil method [20, 23] is a direct method, which is based
on system properties of the GCD. The algorithm of the SMP method uses
stable processes, such as SVD for computing the right Nr and left Nl null
spaces of appropriate matrices. The SMP method requires the construc-
tion of the observability matrix Q(Â, Ĉ) = [Ĉt, ÂtĈt, . . . , (Ât)(d−1)Ĉt]t

of the companion matrix Â of the polynomial of maximal degree and
the left null space Ĉ of a matrix M1 as we will see below. It is known
that the computation of powers of matrices is not always stable. As it
is shown in [23], because of the special form of the companion matrix A
and the orthogonality of C, the powers of A and their product with C
can fail only if it holds very special formulas between the coefficients of
the polynomials ([23] example (8)). An alternative way is this compu-
tation to be done symbolically: there will be no rounding off errors and
because only an inner product must be computed for the last column for
every computation of a power of A (the other columns are the columns
of the previous power of A left shifted), the increase of the computa-
tional time because of the rational representation of the coefficients and
the symbolical computation of the products is not very considerable. In
this manner we achieve to compute the observability matrix avoiding
one of the main disadvantages of the SMP method (the computation of
the powers of A) without significant surcharge of the required time.

Another stable way to compute the null space of Q is first to reduce the
pair (Â, Ĉ) to a block Hessenberg form without computing the observ-
ability matrix. From the staircase algorithm [9], we take an orthogonally

similar pair (H, C̃), such that: Q(Â, Ĉ) = P T [B̃, HB̃, . . . ,H(d−1)B̃],

where P is an orthogonal matrix such that PÂP T = H. Because the
matrix H has much more elements than the companion matrix A, the
computation of the powers of H demands more flops than those of the
powers of A and thus in our case it is better to use the first way for the
computation of the null space of Q.

The main target of the SMP algorithm is to form the GCD pencil
Z(s) and specify any minor of maximal order, which gives the required
GCD. This specification can be done symbolically. Let Pm,d be the set
of polynomials as defined in section II.

3.1.1 The SMP Algorithm.
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STEP 1 : Compute a basis matrix M for the right nullspace Nr(Pm)
using the SVD algorithm.

STEP 2 : Construct M1 by deleting the last row of M

STEP 3 : Compute the matrix Ĉ such that ĈM1 = 0
STEP 4 : Construct the observability matrix:

Q(Â, Ĉ) = [Ĉt, ÂtĈt, . . . , (Ât)(d−1)Ĉt]t

STEP 5 : Compute the right nullspace W = Nr(Q(Â, Ĉ)) using the
SVD algorithm.

STEP 6 : Construct the pencil Z(s) = sW − ÂW . Any minor of
maximal order of Z(s) defines the GCD of set of the
polynomials.

3.1.2 Complexity. The computation of the right nullspace

of Pm requires O(mn2 + 11n3

2 ) flops, of the of the matrix C demands

O((r− 1)n3 + 11n3

2 ) flops, where r = ρ(Pm). The computation of Ĉ such

that ĈM1 = 0 requires O (4µd2 +8d3) flops applying the SVD algorithm
to M t

1, where µ = d − r + 1, r = ρ(Pm) (*).
The computation of any minor of maximal order of Z(s) can be done
symbolically using the LU factorization.

Totally the Standard Matrix Pencil method demands: O (4md2 +
4d3(r − 1) + 4µd2 + 24d3 + 3

2d2r) flops. If the computation of Q is done
symbolically the required flops are diminished by the flops in (*) but the
computational time is increased slightly.

3.1.3 Numerical Stability. The Standard Matrix Pencil
Method requires two SVD calls and the construction of the observabil-
ity matrix. The numerical computation of the powers of A (Â)(k) is in
practise stable. Of course there are no errors in symbolically implemen-
tation of this step. Since the matrix (Â)(k) is computed, the numerical

computation of the product (Ât)(k)Ĉt = (Ĉ(Â)(k))t is stable because the
matrix C is orthonormal. For the last matrix multiplication it holds :
fl(Ĉ(Â)(k)) = Ĉ(Â)(k) + E, with ‖E‖2 ≤ d2u1‖C‖2‖Ak‖2 = d2u1‖Ak‖2,
where fl(·) denotes the computed floating point number and u1 is of
order of unit round off. The computation of the minor of maximal order
of Z(s) is done symbolically and so there are no rounding off errors.

3.2 The Modified Resultant Matrix Pencil
Method (MRMP)

The modified matrix pencil method [23] is a similar with the MP
method, which is based to the modified Sylvester matrix S∗, it constructs
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another GCD pencil Z(s) and specify any minor of maximal order, which
gives the required GCD. This specification can also be done symbolically.

3.2.1 The MRMP Algorithm.

STEP 1 : Define a basis M̃ for the right nullspace of the
modified Sylvester matrix S∗ using the modified QR
factorization in first phase of SVD.

STEP 2 : Define the Matrix Pencil Z̃(s) = sM̃1 − M̃2 for the Resul-

tant set, where M̃1, M̃2 are the matrices obtained from

M̃ by deleting the last and the first row of M̃ respectively.

STEP 3 : Compute any non-zero minor determinant d(s) of Z̃(s) and
thus obtain GCD=d(s)

3.2.2 Complexity. The Modified Resultant Matrix Pencil
method requires O((n + p)3(2log2(n) − 1

3) + (n + p)2(2mlog2(n) + p) +
12k(n + p)2), where k is the number of the calls of the SVD-step.

3.2.3 Numerical Stability. The computed GCD is the exact
GCD of a slightly disrupted set of the initial polynomials. The final
error is E = E1 + E2, with ‖E1‖F ≤ ϕ(n)u‖S‖F and ‖E‖2 ≤ (ϕ(n) +
c(m, n) + c(m, n) ·ϕ(n) · u) · u · ‖S‖F where u is the unit round off error,
‖ · ‖F the Frobenius norm and ϕ(n) is a slowly growing function of n [8]
and c(m, n) is a constant depending on m, n.

3.3 Another Subspace-Based Method for
Computing the GCD of Several Polynomials
(SS)

The subspace concept is actually very common among several meth-
ods for computing the GCD of many polynomials, including those we
described in the previous sections. The SVD procedure applied to a
generalized Sylvester matrix is the basic tool for a subspace method. A
representative and rather simple algorithm, which approaches the GCD
problem from the subspace concept, is presented in [31] and we shall
refer to it as the SS algorithm.

Given a set of univariate polynomials Pm,n, the first two steps of
the SS algorithm involves the construction of an m(n + 1) × (2n + 1)
generalized Sylvester matrix Y from the input polynomials and the com-
putation of the left null space of the transposed Y t via SVD. If we denote
by U0 ∈ ℜ(2n+1)×k the basis matrix for the computed left null space of
Y t and C is the (2n + 1) × (2n + 1 − k) Toeplitz matrix of a degree
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K polynomial with arbitrary coefficients, then the GCD vector is actu-
ally the unique (up to a scalar) solution of the system U t

0 C = 0, [31].
Obviously, the degree of the GCD is k = colspan{U0}.

For the approximate GCD problem, an equivalent and more appro-
priate way to compute the GCD vector with the SS algorithm is to
construct k Hankel matrices Ũi ∈ ℜ(k+1)×(2n+1−k), i = 1, . . . , k from the
columns of U0, form the matrix Ũ = [Ũ1, . . . , Ũk] ∈ ℜ(k+1)×k(2n+1−k) and
compute a basis matrix V0 for the left null space of Ũ by using the SVD
procedure. The last column of V0, which corresponds to the smallest sin-
gular value (expected to be zero), contains the k + 1 coefficients of the
GCD. The yielded GCD can be considered as an approximate ε-GCD for
a tolerance ε equal to the machine’s numerical precision. However, for a
different tolerance ε, we can select a singular value σj from the singular
value decomposition of Y t such that σj > ε · f(h, n) and σj+1 ≤ ε, [7],
and compute an ε-GCD of degree k′ = 2n + 1 − j 6= k.

Although it is not mentioned in [31], the computational cost of the SS
algorithm is dominated by the SVD of the generalized Sylvester matrix
Y t, which requires O(2 m2n3 + 5m2n2) flops, [12]. However, the stabil-
ity and the effectiveness of the algorithm in large sets of polynomials
is not well documented in [31] and additionally there not any reference
about the total numerical error of the algorithm. Practically, the perfor-
mance of the SS algorithm is good when using floating-point operations
of medium-high accuracy but becomes very slow in hybrid computations.

4. Approximate Solutions

It is well known that, when working with inexact data in a compu-
tational environment with limited numerical accuracy, the outcome of a
numerical algorithm is usually an approximation of the expected exact
solution due to the accumulation of numerical errors. In the case of
GCD algorithms, the solution produced can be considered either as an
approximate solution of the original set of polynomials, within a toler-
ance ε, or as the exact solution of a perturbed set of polynomials. The
following definition is typical for the approximate GCD.

Definition 1.1 Let Pm,n = {a(s), bi(s), i = 1 . . . m − 1} a set of
univariate polynomials as defined in (1.0) and ε > 0 a fixed numeri-
cal accuracy. An almost common divisor (ε-divisor) of the polynomi-
als of the set Pm,n is an exact common divisor of a perturbed set of
polynomials P ′

m,n = {a(s) + ∆a(s), bi(s) + ∆bi(s), i = 1 . . . m − 1},
where the polynomial perturbations satisfy deg{∆a(s)} ≤ deg{a(s)},
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deg{∆bi(s)} ≤ deg{bi(s)} and

‖∆a(s)‖2 +

m−1∑

i=1

‖∆bi(s)‖2 < ε (1.4)

An approximate GCD (ε-GCD) of the set Pm,n is an ε-divisor of maxi-
mum degree.

The computation of the GCD of a set polynomials is nongeneric. Gen-
erally, in most GCD problems the degree of the GCD is unknown and
thus a numerical algorithm can easily produce misleading results. An
approach to this problem is to certify and fix a maximum degree accord-
ing to appropriate theorems and techniques [11, 33] and proceed with the
computation of a common divisor of this particular degree. The evalua-
tion of the strength of a given approximation is another important issue
here.

The definition of the approximate GCD as the exact GCD of a per-
turbed set has led to the development of a general approach for defin-
ing the approximate GCD, evaluating the strength of approximation
and finally defining the notion of the optimal approximate GCD as a
distance problem [19]. In fact, recent results on the representation of
the GCD [13, 19], using Toeplitz matrices and generalized resultants
(Sylvester matrices), allow the reduction of the approximate GCD com-
putation to an equivalent approximate factorization of generalized resul-
tants. Specifically, for a given set of polynomials Pm,n and its GCD of
degree k :

g(s) = sk + λ1 sk−1 + . . . + λk, λk 6= 0

it holds that [13] :
SP = [Ok|SPc ] · Φg (1.5)

where SP is the (mn + p) × (n + p) Sylvester matrix of the set Pm,n ,
Ok is the (mn + p) × k zero matrix, SPc is the (mn + p) × (n + p − k)
Sylvester matrix of the set Pc

m,n−k of coprime polynomials, obtained

from the original set Pm,n after dividing its elements by the GCD g(s)
and, finally, Φg is the (n + p) × (n + p) lower triangular Toeplitz-like
matrix of the polynomial g(s).

We now define the strength of an r-order approximate common divisor
of a polynomial set Pm,n [19] :

Definition 1.2 Let Pm,n and v(s) ∈ ℜ[s], deg{v(s)} = r ≤ p. The
polynomial v(s) is an r-order approximate common divisor of Pm,n and
its strength is defined as a solution of the following minimization prob-
lem :

f(P,Pc) = min
∀Pc

{‖SP − [Or|SPc ] · Φv‖F } (1.6)
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Furthermore, v(s) is an r-order approximate GCD of Pm,n if the mini-
mum corresponds to a coprime set Pc

m,n−r, or to a full rank SPc.

We prefer to use as a metric the Frobenius matrix norm [8] denoted
by ‖ · ‖F , which relates in a direct way to the set of polynomials. How-
ever, the minimization problem in Definition 1.2 cannot be solved easily,
because it may involve too many arbitrary parameters.

Let us have a polynomial v(s) ∈ ℜ[s] of degree r given as a solution
by a GCD algorithm. We consider it as an exact GCD of a perturbed
set of polynomials P ′

m,n of the form :

P ′
m,n , Pm,n −Qm,n (1.7a)

=
{

p′i(s) = pi(s) − qi(s) :

deg{qi(s)} ≤ deg{pi(s)}, i = 1, . . . ,m
}

(1.7b)

where Qm,n denotes the set of polynomial perturbations [13]. The poly-
nomials of the set Qm,n have arbitrary coefficients, which pass to the
polynomials of the set P ′

m,n. If we use now the respective generalized
resultants (Sylvester matrices) for each set in equation (1.7a), the fol-
lowing relation appears :

SP ′ = SP − SQ (1.8)

It is clear that the exact GCD of a set of polynomials yields SQ =
O ⇒ ‖SQ‖F = 0. Therefore, we may consider a polynomial as a good
approximation of the exact GCD, if ‖SQ‖F is close enough to zero. In
the following, our intention is to find some bounds for ‖SQ‖F .

If we use the factorization of generalized resultants as described in
(1.5), we will have :

SQ = SP − [Or|SP ′c ] · Φv ⇔
SQ · Φ−1

v = SP · Φ−1
v − [Or|SP ′c ] (1.9)

where Φ−1
v is the inverse of Φv. It is important to notice here that P ′c

contains arbitrary parameters. We can select specific values for these
parameters such as :

SP · Φ−1
v − [Or|SP ′c ] = [S(r)|On+p−r] ≡ Ŝ (1.10)

Therefore, from equations (1.9) and (1.10) it follows :

SQ · Φ−1
v = Ŝ

SQ = Ŝ · Φv
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and, since Cond(Φv) = ‖Φv‖F ‖Φ−1
v ‖F ≥ n + p, [8], we conclude with

the following inequality :

‖Ŝ‖F

‖Φ−1
v ‖F

≤ ‖SQ‖F ≤ ‖Ŝ‖F ‖Φv‖F (1.11)

If v(s) has the same degree as the exact GCD of the set, the properties

Sv =
‖Ŝ‖F

‖Φ−1
v ‖F

and Sv = ‖Ŝ‖F ‖Φv‖F (1.12)

characterizes the quality of the proximity of v(s) to the exact GCD of
the set Pm,n and we shall refer to them as the minimum and maximum
strength numbers of v(s) respectively.

These strength numbers are useful indicators for the evaluation of
the strength of a given approximate GCD. More particularly, if Sv ≥ 1,
then the strength of the given approximation is bad and the opposite
holds if Sv < 1. Normally, we prefer solutions with maximum strength
number Sv << 1 or better close to the numerical software accuracy of
the system. Otherwise, we have to solve the minimization problem (1.6)
to find the actual strength. The advantage is that the computation of
the strength numbers is straightforward and can give us information
about the strength of a GCD before we go to an optimization method.

4.1 Computational Examples

The previous methods have been applied to many sets of polynomi-
als. The final results using variable floating point, symbolic and hybrid
operations are presented in tables 1 - 4. The following notation is used
in the tables.

m : the number of polynomials
n : the maximum degree of the polynomials
p : the second maximum degree of the polynomials
d : the degree of the GCD
Tol : numerical accuracy ε

Rel : the numerical relative error
Strength : the strength of the GCD
Dig : the digits of software accuracy
Time : the required time in seconds
Flops : the required flops
Num : numerical implementation
Sym : symbolical implementation
Hybrid : Hybrid implementation
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In tables 1 & 2 the results of the following example sets are presented :
Example I : Two polynomials of degree 16 and 14 with integer coefficients

of 8 digits and GCD degree 4, [2].
Example II : Eleven polynomials of degree 17 with integer coefficients

of 2 digits and GCD degree 3, [28].
Example III : Two polynomials of degree 12 and GCD degree 6, (example

1, [37]). The roots of the polynomials spread on the circles of radius 0.5
and 1.5.

Comment : In tables 1 and 2 the tolerance (Tol) is fixed and the digits
are variable. In tables 3 and 4 both tolerance and digits are fixed.

5. Numerical, Symbolical and Hybrid Behavior
of the methods

All the sets of polynomials have been tested numerically and sym-
bolically. Executing the programs symbolically, there are no floating
point errors during the processes and the final result is the exact GCD
of the polynomials. But the time required for symbolical computations
is considerable. On the other hand, the floating-point operations and
the accumulation of rounding errors force us to use accuracies on which
the GCD is dependent. Different accuracies may lead to different GCDs.
This is the main disadvantage of numerical methods. However, the re-
quired time is less than the corresponding time of symbolical methods.
The use of the partial SVD [26, 35] can reduce the execution time of
ERES, MRMP and SMP methods.

Having tested thoroughly, the ERES, RERE, MRERE, SMP methods
computing the GCD of several sets of polynomials, we have reached the
following conclusions about the behavior of the methods :

(a) The ERES method behaves very well in Hybrid mode, since it
produces accurate results fast enough. The method becomes slower in
the case of small sets of polynomials of high degree.

(b) The MRERE methods behave very well in numerical mode for
various kinds of sets of polynomials and especially in large sets of poly-
nomials of high degree, but lose their speed, when using symbolic type
of operations.

(c) The RERE methods demand significantly more flops in compari-
son with MRERE methods and their complexity makes them inefficient
methods.

(d) The MRMP method demands much more time and flops than the
SMP method without producing better results.

(e) It seems that for large sets of linearly depended polynomials the
Hybrid ERES and the Numerical MRERE yield better results in ac-
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Table 1.1. Comparison of Algorithms : Tol = 10−16

Example ERES RERE (LU) MRERE (LU) RERE (QR)

Hybrid Num Sym Num Sym Num Sym

I Dig 16 32 - 32 - 35 -

Rel 0 0.50 · 10−24 0 0.50 · 10−24 0 0.13 · 10−24 0

Strength 0 0.20 · 10−22 0 0.20 · 10−22 0 0.37 · 10−23 0

Time 1.842 0.020 0.120 0.081 0 0.060 0.270

Flops 162140 14400 - 9790 - 32400 -

II Dig 16 24 - 25 - 25 -

Rel 0 0.90 · 10−21 0 0.12 · 10−19 0 0.40 · 10−21 0

Strength 0 0.21 · 10−20 0 0.18 · 10−19 0 0.24 · 10−20 0

Time 1.342 0.260 2.190 0.161 1.432 0.881 4.513

Flops 112437 176000 - 87529 - 362667 -

III Dig 16 18 - 18 - 19 -

Rel 0 0.68 · 10−17 0 0.68 · 10−17 0 0.13 · 10−17 0

Strength 0 0.32 · 10−16 0 0.32 · 10−16 0 0.66 · 10−17 0

Time 2.794 0.010 0.340 0.007 0.234 0.030 0.793

Flops 162140 6912 - 4759 - 16128 -

Example I : m = 2, n = 16, p = 14, d = 4
Example II : m = 11, n = 17, p = 17, d = 3
Example III : m = 2, n = 12, p = 12, d = 6
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Table 1.2. Comparison of Algorithms : Tol = 10−16

Example MRERE (QR) MRMP MP SS

Num Sym Hybrid Hybrid Num

I Dig 35 - 25 27 25

Rel 0.13 · 10−24 0 0.26 · 10−13 0.19 · 10−13 2.90 · 10−12

Strength 0.37 · 10−23 0 0.31 · 10−6 0.96 · 10−11 0.2 · 10−1

Time 0.050 0.169 0.050 0.060 0.985

Flops 19580 - 267080 121314 91898532

II Dig 25 - 20 21 20

Rel 0.95 · 10−21 0 0.25 · 10−17 0.80 · 10−17 6.0 · 10−19

Strength 0.15 · 10−20 0 0.56 · 10−16 0.33 · 10−16 5.51 · 10−14

Time 0.381 2.178 3.395 0.861 5.360

Flops 175058 - 761725 56664 4.1 · 109

III Dig 19 - 19 21 20

Rel 0.13 · 10−17 0 0.65 · 10−12 0.59 · 10−17 6.9 · 10−19

Strength 0.66 · 10−17 0 0.38 · 10−11 0.28 · 10−16 3.35 · 10−18

Time 0.020 0.468 2.835 0.290 0.579

Flops 9517 - 126720 50832 24082500

Example I : m = 2, n = 16, p = 14, d = 4
Example II : m = 11, n = 17, p = 17, d = 3
Example III : m = 2, n = 12, p = 12, d = 6
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Table 1.3. Comparison of Algorithms : Tol = 10−16, Dig = 32

ERES RERE(LU) MRERE(LU) RERE(QR) MRERE(QR) MRMP MP SS

Hybrid Numerical Numerical Numerical Numerical Hybrid Hybrid Numerical

A Rel 3.31 · 10−31 3.82 · 10−30 2.94 · 10−31 1.35 · 10−29 3.36 · 10−30 2.08 · 10−31 2.49 · 10−31 2.15 · 10−31

Strength 1.25 · 10−27 6.11 · 10−26 7.70 · 10−27 3.30 · 10−25 5.56 · 10−26 2.60 · 10−26 3.28 · 10−26 8.95 · 10−27

Time 0.094 0.016 0.016 0.031 0.015 0.125 0.063 0.203

Flops 471 2584 1447 5167 2097 9167 2480 5445000

B Rel 1.30 · 10−31 4.56 · 10−26 2.01 · 10−28 5.56 · 10−27 3.80 · 10−26 1.82 · 10−26 1.53 · 10−27 6.12 · 10−31

Strength 4.26 · 10−27 1.49 · 10−23 6.42 · 10−24 1.16 · 10−21 1.44 · 10−21 1.66 · 10−21 1.01 · 10−22 4.37 · 10−26

Time 0.141 0.047 0.031 0.172 0.063 0.937 0.156 1.0

Flops 900 20667 11894 41334 20603 73334 2480 1.2 · 109

C Rel 3.82 · 10−32 2.43 · 10−28 1.78 · 10−29 1.98 · 10−23 5.11 · 10−23 3.16 · 10−24 2.14 · 10−25 2.02 · 10−31

Strength 3.03 · 10−26 1.99 · 10−23 9.96 · 10−25 1.47 · 10−18 3.34 · 10−18 5.59 · 10−19 1.85 · 10−20 7.07 · 10−26

Time 0.110 0.094 0.032 0.375 0.172 1.516 0.203 2.375

Flops 1476 40896 19355 81792 30334 126720 4575 5.7 · 109

Example A : m = 10, n = 5, p = 5, d = 2
Example B : m = 10, n = 10, p = 10, d = 2
Example C : m = 10, n = 15, p = 10, d = 3
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Table 1.4. Comparison of Algorithms : Tol = 10−16, Dig = 32

ERES RERE(LU) MRERE(LU) RERE(QR) MRERE(QR) MRMP MP SS

Hybrid Numerical Numerical Numerical Numerical Hybrid Hybrid Numerical

D Rel 4.37 · 10−32 0.927 0.928 0.927 0.928 3.84 · 10−27 1.51 · 10−18 1.01 · 10−30

Strength 6.10 · 10−17 4.53 · 10−10 1.71 · 10−9 2.93 · 10−9 3.79 · 10−10 5.026 · 10−12 3.36 · 10−12 1.48 · 10−16

Time 5.203 1.328 0.562 2.719 1.578 18.048 4.078 18.063

Flops 3993 479167 204917 958334 372389 1145834 73684 3.1 · 1012

E Rel 4.31 · 10−31 0.14 · 10−26 0.96 · 10−30 0.13 · 10−28 0.29 · 10−28 0.95 · 10−28 0.23 · 10−28
×

Strength 1.51 · 10−27 0.13 · 10−26 0.16 · 10−26 0.41 · 10−26 0.42 · 10−27 0.55 · 10−23 0.33 · 10−25
×

Time 4.390 39.81 2.75 190.19 11.64 32.92 12.62 ×

Flops 37266 10125000 1125291 20331000 2250582 8933088 19551 ×

F Rel 4.39 · 10−32 0.14 · 10−26 0.96 · 10−30 0.13 · 10−28 0.29 · 10−28 0.93 · 10−25 0.55 · 10−25
×

Strength 4.67 · 10−27 0.13 · 10−26 0.16 · 10−26 0.41 · 10−26 0.42 · 10−27 0.72 · 10−22 0.48 · 10−21
×

Time 4.225 96.20 3.22 198.64 11.39 51.35 24.91 ×

Flops 358875 9703225 485534 19488301 971068 7433284 1125376 ×

Example D : m = 15, n = 25, p = 25, d = 5
Example E : m = 50, n = 40, p = 40, d = 5
Example F : m = 50, n = 40, p = 40, d = 30
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ceptable time limits, number of digits, with negligible relative error and
strength number.

A subtle point in the numerical calculations is that it is not always
easy to specify the exact accuracy to get numerically the correct GCD.
This can be overcome in symbolical implementation but the more poly-
nomials and the higher degrees we have, the more time we need to com-
pute the GCD. Thus, a combination of the above implementations can
lead to an improvement in the overall performance of the algorithms.
Of course the hybrid implementation depends on the nature of the al-
gorithm. Not all algorithms can be benefit from a hybrid environment
like ERES [5]. The conversion of the data to an appropriate type often
leads to more accurate computations and thus less numerical errors.

In the following table we compare the algorithms computing the GCD
of polynomials. We propose the most suitable algorithm for the compu-
tation of the GCD of two or several polynomials according to its stability,
complexity and required computational time. In the following table, m

denotes the number of polynomials and n the maximum degree.

Table 1.5. Comparison of Algorithms: Computation of the GCD of polynomials.

Method m n Stability Decision

ERES two high stable not proposed
RERE two high stable proposed
MRERE two high stable proposed
SMP two high stable not proposed
MRMP two high stable not proposed

ERES several high stable proposed
RERE several high stable not proposed
MRERE several high stable proposed
SMP several high stable proposed
MRMP several high stable not proposed

6. Conclusions

According to the comparison of algorithms that we made, we conclude
with the following :

1 Matrix-based methods can handle many polynomials simultane-
ously, without resorting to the successive two at a time compu-
tations of the Euclidean or other pairwise based approaches. Al-
though the computation of the GCD of a pair of polynomials, by
using a Euclid-based algorithm, can be stable, it is not quite clear
if such method can be generalised to a set of several polynomials
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and how this generalisation affects the complexity of the algorithm
and the accuracy of the produced results. The sequential computa-
tion of the GCD in pairs often leads to an excessive accumulation
of numerical errors especially in the case of large sets of polyno-
mials and obviously create erroneous results. On the other hand,
matrix-based methods tend to have better performance and nu-
merical stability in the case of large sets of polynomials.

2 The development of robust computational procedures for engineer-
ing type models always has to take into account that the models
have certain accuracy and that it is meaningless to continue com-
putations beyond the accuracy of the original data set. Therefore,
it is necessary to develop proper numerical termination criteria
that allow the derivation of approximate solutions to the GCD
computation problem [20, 27]. In [19] the definition of the approx-
imate GCD is considered as a distance problem in a projective
space. The new distance framework given for the approximate
GCD provides the means for computing optimal solutions, as well
as evaluating the strength of ad-hoc approximations derived from
different algorithms.

3 The combination of symbolic-numeric operations performed effec-
tively in a mixture of numerical and symbolical steps can increase
the performance of a matrix-based GCD algorithm. Generally,
symbolic processing is used to improve on the conditioning of the
input data, or to handle a numerically ill-conditioned subprob-
lem, and numeric tools are used in accelerating certain parts of
an algorithm, or in computing approximate outputs. The effec-
tive combination of symbolic and numerical operations depends
on the nature of an algebraic method and the proper handling
of the input data either as rational or floating-point numbers.
Symbolic-numeric implementation is possible in software program-
ming environments with symbolic-numeric arithmetic capabilities
such as Maple, Mathematica, Matlab and others, which involve
the efficient combination of exact (rational-symbolic) and numer-
ical (floating-point) operations. This combination gives a differ-
ent perspective in the way to implement an algorithm and intro-
duces the notion of hybrid computations. The nature of the ERES
method allows the implementation of a programming algorithm
that combines in an optimal setup the symbolical application of
rows transformations and shifting, and the numerical computa-
tion of an appropriate termination criterion, which can provide
the required approximate solutions. This combination highlights
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the hybridity of the ERES method and makes it the most suitable
method for the computation of approximate GCDs.

4 Most of the methods and algorithms, which were described in the
previous section, perform singular value decomposition (svd). The
necessary information that we need from the svd often has to
do with the smallest or the greatest singular value (ERES, MP).
Therefore a partial singular value decomposition algorithm [35] can
be applied in order to speed up the whole process.

The paper is focused on the development of matrix-based algorithms
for the GCD problem of sets of several real univariate polynomials, which
is considered a part of the fundamental problem of computing nongeneric
invariants.
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