1,052 research outputs found

    The ethics of using artificial intelligence in medical research

    Get PDF
    The integration of artificial intelligence (AI) technologies into medical research introduces significant ethical challenges that necessitate the strengthening of ethical frameworks. This review highlights the issues of privacy, bias, accountability, informed consent, and regulatory compliance as central concerns. AI systems, particularly in medical research, may compromise patient data privacy, perpetuate biases if they are trained on nondiverse datasets, and obscure accountability owing to their “black box” nature. Furthermore, the complexity of the role of AI may affect patients’ informed consent, as they may not fully grasp the extent of AI involvement in their care. Compliance with regulations such as the Health Insurance Portability and Accountability Act and General Data Protection Regulation is essential, as they address liability in cases of AI errors. This review advocates a balanced approach to AI autonomy in clinical decisions, the rigorous validation of AI systems, ongoing monitoring, and robust data governance. Engaging diverse stakeholders is crucial for aligning AI development with ethical norms and addressing practical clinical needs. Ultimately, the proactive management of AI’s ethical implications is vital to ensure that its integration into healthcare improves patient outcomes without compromising ethical integrity

    Comparative analysis of Access PCT and Elecsys BRAHMS PCT assays for procalcitonin measurements

    Get PDF
    Background Procalcitonin (PCT) is a crucial biomarker for diagnosing sepsis and managing antibiotic therapy. This study evaluated the analytical performance and comparability of the Access PCT and Elecsys BRAHMS PCT assays. Methods The precision, detection capability, linearity, and reference range of both assays were assessed. A comparative analysis included 182 patient samples categorized into four risk groups to compare the results between Access PCT and Elecsys BRAHMS PCT assays. Results The Access PCT assay demonstrated precision within the manufacturer’s threshold, and its detection capabilities were verified. This assay exhibited excellent linearity and appropriate reference intervals. Comparative analysis indicated that the Access PCT assay reported higher overall PCT levels than the Elecsys BRAHMS assay, with high agreement between the assays (κ=0.941). However, the biases varied across different PCT concentration intervals. Conclusions Both the Access PCT and Elecsys BRAHMS PCT assays performed robustly with notable concordance but varying biases at different concentration intervals. The observed biases require careful consideration in clinical decision-making, especially when adopting novel assay systems. Standardizing the calibration across different platforms is recommended to improve assay comparability

    Evaluation of automated calibration and quality control processes using the Aptio total laboratory automation system

    Get PDF
    Background The objective of this study was to determine whether manually performed calibration and quality control (QC) processes could be replaced with an automated laboratory system when installed analyzers fail to provide automated calibration and QC functions. Methods Alanine aminotransferase (ALT), total cholesterol (TC), creatinine (Cr), direct bilirubin (DB), and lipase (Lip) items were used as analytes. We prepared pooled serum samples at 10 levels for each test item and divided them into two groups; five for the analytical measurement range (AMR) group and five for the medical decision point (MDP) group. Calibration and QC processes were performed for five consecutive days, and ALT, TC, Cr, DB, and Lip levels were measured in the two groups using automated and manual methods. Precision and the mean difference between the calibration and QC methods were evaluated using the reported values of the test items in each group. Results Repeatability and within-laboratory coefficients of variation (CVs) between the automated system and the conventional manual system in the AMR group were similar. However, the mean reported values for test items were significantly different between the two systems. In the MDP group, repeatability and within-laboratory CVs were better with the automation system. All calibration and QC processes were successfully implemented with the Aptio total laboratory automation system. Conclusion The Aptio total laboratory automation system could be applied to routine practice to improve precision and efficiency

    Measurements of the pp → ZZ production cross section and the Z → 4ℓ branching fraction, and constraints on anomalous triple gauge couplings at √s = 13 TeV

    Get PDF
    Four-lepton production in proton-proton collisions, pp -> (Z/gamma*)(Z/gamma*) -> 4l, where l = e or mu, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb(-1). The ZZ production cross section, sigma(pp -> ZZ) = 17.2 +/- 0.5 (stat) +/- 0.7 (syst) +/- 0.4 (theo) +/- 0.4 (lumi) pb, measured using events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 4l) = 4.83(-0.22)(+0.23) (stat)(-0.29)(+0.32) (syst) +/- 0.08 (theo) +/- 0.12(lumi) x 10(-6) for events with a four-lepton invariant mass in the range 80 4GeV for all opposite-sign, same-flavor lepton pairs. The results agree with standard model predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ. couplings at 95% confidence level: -0.0012 < f(4)(Z) < 0.0010, -0.0010 < f(5)(Z) < 0.0013, -0.0012 < f(4)(gamma) < 0.0013, -0.0012 < f(5)(gamma) < 0.0013

    Measurement of the t(t)over-barb(b)over-bar production cross section in the all-jet final state in pp collisions at root s=13 TeV

    Get PDF
    A measurement of the production cross section of top quark pairs in association with two b jets (t (t) over barb (b) over bar) is presented using data collected in proton-proton collisions at root s=13 TeV by the CMS detector at the LHC corresponding to an integrated luminosity of 35.9 fb(-1). The cross section is measured in the all-jet decay channel of the top quark pair by selecting events containing at least eight jets, of which at least two are identified as originating from the hadronization of b quarks. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The cross section is determined for the total phase space to be 5.5 +/- 0.3 (stat)(-1.3)(+)(1.6) (syst)pb and also measured for two fiducial t (t) over barb (b) over bar, definitions. The measured cross sections are found to be larger than theoretical predictions by a factor of 1.5-2.4, corresponding to 1-2 standard deviations. (C) 2020 The Author. Published by Elsevier B.V.Peer reviewe

    Search for top squark pair production using dilepton final states in pp collision data collected at root s=13TeV

    Get PDF
    A search is presented for supersymmetric partners of the top quark (top squarks) in final states with two oppositely charged leptons (electrons or muons), jets identified as originating from bquarks, and missing transverse momentum. The search uses data from proton-proton collisions at root s = 13 TeV collected with the CMS detector, corresponding to an integrated luminosity of 137 fb(-1). Hypothetical signal events are efficiently separated from the dominant top quark pair production background with requirements on the significance of the missing transverse momentum and on transverse mass variables. No significant deviation is observed from the expected background. Exclusion limits are set in the context of simplified supersymmetric models with pair-produced lightest top squarks. For top squarks decaying exclusively to a top quark and a lightest neutralino, lower limits are placed at 95% confidence level on the masses of the top squark and the neutralino up to 925 and 450 GeV, respectively. If the decay proceeds via an intermediate chargino, the corresponding lower limits on the mass of the lightest top squark are set up to 850 GeV for neutralino masses below 420 GeV. For top squarks undergoing a cascade decay through charginos and sleptons, the mass limits reach up to 1.4 TeV and 900 GeV respectively for the top squark and the lightest neutralino.Peer reviewe

    Development and validation of HERWIG 7 tunes from CMS underlying-event measurements

    Get PDF
    This paper presents new sets of parameters (“tunes”) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat

    Search for dark matter in events with a leptoquark and missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search is presented for dark matter in proton-proton collisions at a center-of-mass energy of root s= 13 TeV using events with at least one high transverse momentum (p(T)) muon, at least one high-p(T) jet, and large missing transverse momentum. The data were collected with the CMS detector at the CERN LHC in 2016 and 2017, and correspond to an integrated luminosity of 77.4 fb(-1). In the examined scenario, a pair of scalar leptoquarks is assumed to be produced. One leptoquark decays to a muon and a jet while the other decays to dark matter and low-p(T) standard model particles. The signature for signal events would be significant missing transverse momentum from the dark matter in conjunction with a peak at the leptoquark mass in the invariant mass distribution of the highest p(T) muon and jet. The data are observed to be consistent with the background predicted by the standard model. For the first benchmark scenario considered, dark matter masses up to 500 GeV are excluded for leptoquark masses m(LQ) approximate to 1400 GeV, and up to 300 GeV for m(LQ) approximate to 1500 GeV. For the second benchmark scenario, dark matter masses up to 600 GeV are excluded for m(LQ) approximate to 1400 GeV. (C) 2019 The Author(s). Published by Elsevier B.V.Peer reviewe

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The second-order Fourier coefficients (v(2)) characterizing the azimuthal distributions of Y(1S) and Y(2S) mesons produced in PbPb collisions at root s(NN) = 5.02 TeV are studied. The Y mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb(-1). The scalar product method is used to extract the v2 coefficients of the azimuthal distributions. Results are reported for the rapidity range vertical bar y vertical bar < 2.4, in the transverse momentum interval 0 < pT < 50 GeV/c, and in three centrality ranges of 10-30%, 30-50% and 50-90%. In contrast to the J/psi mesons, the measured v(2) values for the Y mesons are found to be consistent with zero. (C) 2021 The Author(s). Published by Elsevier B.V.Peer reviewe
    corecore