193 research outputs found

    Climatological mean circulation at the New England shelf break

    Get PDF
    Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1874–1893, doi:10.1175/2011JPO4604.1.A two-dimensional cross-shelf model of the New England continental shelf and slope is used to investigate the mean cross-shelf and vertical circulation at the shelf break and their seasonal variation. The model temperature and salinity fields are nudged toward climatology. Annual and seasonal mean wind stresses are applied on the surface in separate equilibrium simulations. The along-shelf pressure gradient force associated with the along-shelf sea level tilt is tuned to match the modeled and observed depth-averaged along-shelf velocity. Steady-state model solutions show strong seasonal variation in along-shelf and cross-shelf velocity, with the strongest along-shelf jet and interior onshore flow in winter, consistent with observations. Along-shelf sea level tilt associated with the tuned along-shelf pressure gradient increases shoreward because of decreasing water depth. The along-shelf sea level tilt varies seasonally with the wind and is the strongest in winter and weakest in summer. A persistent upwelling is generated at the shelf break with a maximum strength of 2 m day−1 at 50-m depth in winter. The modeled shelfbreak upwelling differs from the traditional view in that most of the upwelled water is from the upper continental slope instead of from the shelf in the form of a detached bottom boundary layer.WGZ was supported by the Woods Hole Oceanographic Institution postdoctoral scholarship program. GGGandDJMwere supported byONRGrant N-00014- 06-1-0739

    Anticancer, Biophysical and Computational Investigations of Half-Sandwich Ruthenium(II) Thiosemicarbazone Complexes: The Effect of Arene \u3ci\u3eVersus\u3c/i\u3e Thiacrown Face-Cap

    Get PDF
    A series of half-sandwich ruthenium complexes, two containing an arene face-cap and the other a thiacrown ether face-cap were synthesized to investigate the necessity of the arene for anticancer activity in this class of compounds. The complexes are formulated as [(h6-p-cymene)Ru(dmabTSC)Cl]PF6, [(h6-benzene)Ru(dmabTSC)Cl]PF6 (arene complexes), and [([9]aneS3(dmabTSC)Cl]PF6 (dmabTSC = dimethylaminobenzaldehye thiosemicarbazone). It was observed that none of the complexes showed good anticancer activity in vitro against HCT-116 and Caco-2 (colon adenocarcinoma) cells. All three complexes can bind strongly to calf-thymus DNA with binding constants on the order of 105 M-1. In addition they all bind strongly to human serum albumin with binding constants between 105 and 106 M-1. There appears to be a single binding site on the protein for these complexes. A computational investigation of these complexes and their hydrolysis products was carried out by molecular docking with DNA and topoisomerase II. From this analysis it is noted that the type of face-capping ligand had different effects on the two macromolecules. It is therefore noted that the knowledge gained from this study will be useful in identifying the type of complexes in this class that show useful metallodrug potential

    Predicted mechanisms of resistance to mTOR inhibitors

    Get PDF
    The serine/threonine kinase, mTOR (mammalian Target of Rapamycin) has become a focus for cancer drug development. Rapamycins are highly specific inhibitors of mTOR and potently suppress tumour cell growth by retarding cells in G1 phase or potentially inducing apoptosis. Currently, both rapamycin and several analogues are being evaluated as anticancer agents in clinical trials. Results indicate that many human cancers have intrinsic resistance and tumours initially sensitive to rapamycins become refractory, demonstrating acquired resistance. Here, we consider mechanisms of resistance to inhibitors of mTOR

    AD51B in Familial Breast Cancer

    Get PDF
    Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11–1.19, P = 8.88 x 10−16) and among familial cases (OR: 1.24, 95% CI: 1.16–1.32, P = 6.19 x 10−11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk

    Multiple effects of toxins isolated from Crotalus durissus terrificus on the hepatitis C virus life cycle

    Get PDF
    Hepatitis C virus (HCV) is one of the main causes of liver disease and transplantation worldwide. Current therapy is expensive, presents additional side effects and viral resistance has been described. Therefore, studies for developing more efficient antivirals against HCV are needed. Compounds isolated from animal venoms have shown antiviral activity against some viruses such as Dengue virus, Yellow fever virus and Measles virus. In this study, we evaluated the effect of the complex crotoxin (CX) and its subunits crotapotin (CP) and phospholipase A2 (PLA2-CB) isolated from the venom of Crotalus durissus terrificus on HCV life cycle. Huh 7.5 cells were infected with HCVcc JFH-1 strain in the presence or absence of these toxins and virus was titrated by focus formation units assay or by qPCR. Toxins were added to the cells at different time points depending on the stage of virus life cycle to be evaluated. The results showed that treatment with PLA2-CB inhibited HCV entry and replication but no effect on HCV release was observed. CX reduced virus entry and release but not replication. By treating cells with CP, an antiviral effect was observed on HCV release, the only stage inhibited by this compound. Our data demonstrated the multiple antiviral effects of toxins from animal venoms on HCV life cycle

    Global Carbon Budget 2021

    Get PDF

    Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci

    Get PDF

    Medicinal and ethnoveterinary remedies of hunters in Trinidad

    Get PDF
    BACKGROUND: Ethnomedicines are used by hunters for themselves and their hunting dogs in Trinidad. Plants are used for snakebites, scorpion stings, for injuries and mange of dogs and to facilitate hunting success. RESULTS: Plants used include Piper hispidum, Pithecelobium unguis-cati, Bauhinia excisa, Bauhinia cumanensis, Cecropia peltata, Aframomum melegueta, Aristolochia rugosa, Aristolochia trilobata, Jatropha curcas, Jatropha gossypifolia, Nicotiana tabacum, Vernonia scorpioides, Petiveria alliacea, Renealmia alpinia, Justicia secunda, Phyllanthus urinaria,Phyllanthus niruri,Momordica charantia, Xiphidium caeruleum, Ottonia ovata, Lepianthes peltata, Capsicum frutescens, Costus scaber, Dendropanax arboreus, Siparuma guianensis, Syngonium podophyllum, Monstera dubia, Solanum species, Eclipta prostrata, Spiranthes acaulis, Croton gossypifolius, Barleria lupulina, Cola nitida, Acrocomia ierensis (tentative ID). CONCLUSION: Plant use is based on odour, and plant morphological characteristics and is embedded in a complex cultural context based on indigenous Amerindian beliefs. It is suggested that the medicinal plants exerted a physiological action on the hunter or his dog. Some of the plants mentioned contain chemicals that may explain the ethnomedicinal and ethnoveterinary use. For instance some of the plants influence the immune system or are effective against internal and external parasites. Plant baths may contribute to the health and well being of the hunting dogs

    Global carbon budget 2019

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history, ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le QuĂ©rĂ© et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019)
    • 

    corecore