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Abstract

Background: Methylation-induced silencing of promoter CpG islands in tumor suppressor genes plays an
important role in human carcinogenesis. In colorectal cancer, the CpG island methylator phenotype (CIMP) is
defined as widespread and elevated levels of DNA methylation and CIMP+ tumors have distinctive
clinicopathological and molecular features. In contrast, the existence of a comparable CIMP subtype in gastric
cancer (GC) has not been clearly established. To further investigate this issue, in the present study we performed
comprehensive DNA methylation profiling of a well-characterised series of primary GC.

Methods: The methylation status of 1,421 autosomal CpG sites located within 768 cancer-related genes was
investigated using the lllumina GoldenGate Methylation Panel | assay on DNA extracted from 60 gastric tumors and
matched tumor-adjacent gastric tissue pairs. Methylation data was analysed using a recursively partitioned mixture
model and investigated for associations with clinicopathological and molecular features including age, Helicobacter
pylori status, tumor site, patient survival, microsatellite instability and BRAF and KRAS mutations.

Results: A total of 147 genes were differentially methylated between tumor and matched tumor-adjacent gastric
tissue, with HOXA5 and hedgehog signalling being the top-ranked gene and signalling pathway, respectively.
Unsupervised clustering of methylation data revealed the existence of 6 subgroups under two main clusters, referred to
as L (low methylation; 28% of cases) and H (high methylation; 72%). Female patients were over-represented in the H
tumor group compared to L group (36% vs 6%; P = 0.024), however no other significant differences in clinicopathological
or molecular features were apparent. CpG sites that were hypermethylated in group H were more frequently located in
CpG islands and marked for polycomb occupancy.

Conclusions: High-throughput methylation analysis implicates genes involved in embryonic development and
hedgehog signaling in gastric tumorigenesis. GC is comprised of two major methylation subtypes, with the highly
methylated group showing some features consistent with a CpG island methylator phenotype.
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Background

Gastric cancer (GC) is a complex disease that involves risk
factors such as Helicobacter pylori (H. pylori) infection,
family history of cancer, environment, diet and genetic
susceptibility variants. GC typically has poor prognosis
due to late clinical presentation at an advanced stage of
disease [1]. Improvements in early detection via screening
and the reduction of known risk factors such as chronic
H. pylori infection and consumption of preserved/salted
food [2-6] has resulted in significantly lower incidence
rates in most parts of the world [7]. However, GC remains
a major public health issue and is the fourth most com-
mon cancer type and the second leading cause of cancer
death worldwide [8,9].

Transcriptional inactivation by cytosine methylation at
promoter CpG islands of tumor suppressor genes is an
important mechanism contributing to the development
of human cancer. In several cancer types, subgroups
defined by distinctive methylation patterns have been
linked to features such as tumor size in breast cancer
[10], tumor type in lung [11] and tumor histology in gli-
oma [12]. The most well studied methylation-defined
subgroup is the CpG Island Methylator Phenotype (CIMP)
in colorectal cancer (CRC) first proposed in 1999 by
Toyota et al. [13]. CIMP + CRC exhibit widespread CpG
island methylation in gene promoter regions and are char-
acterized by distinct clinical, pathological and molecular
features. These include a higher incidence in females and
in the proximal colon, poor histological differentiation and
frequent association with microsatellite instability (MSI)
and BRAF mutations [14,15]. A panel of five methylation
markers has been proposed to standardize the evaluation
of CIMP in CRC [16].

The existence of GC subgroups that are characterized
by distinct methylation patterns and/or CIMP-like prop-
erties has been explored in several studies [17-26]. How-
ever, a standard panel of methylation markers has yet to
be proposed for GC and technical issues remain con-
cerning the use of non-quantitative analytical methods
and the limited number of genes investigated for methy-
lation. To consolidate knowledge on DNA methylation
in GC, we recently performed a meta-analysis of 106
case—control studies that reported on the methylation
of 122 candidate genes [27]. A total of 77 genes were
found to be differentially methylated between tumor
and normal tissue, including genes involved in apop-
tosis (APAF2, BCL2), cell cycle regulation (p15, p16)
and DNA repair (XRCCI). Some studies alluded to
the existence of CIMP by referring to a distinct sub-
set of GC that exhibited a high frequency of concur-
rent gene promoter CpG island hypermethylation.
However, the existence and phenotypic properties of
CIMP in GC remain controversial, with major con-
founding factors likely to be the number and identity
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of CpG sites interrogated for methylation and the
GC sample size and quality.

We previously demonstrated that the level of tumor
cell content in GC has a major impact on the hierarch-
ical clustering of methylation data [28]. We established
that a tumor cell content of 70% was the minimum level
required for the reliable analysis of methylation. In the
current study, 60 GC samples underwent prior review
by pathologists to ensure this minimum tumor cell con-
tent was met prior to methylation analysis using the
GoldenGate Methylation BeadArray (Illumina) platform.
This system allows simultaneous quantification of the
methylation level at 1,421 autosomal CpG sites located
within 768 cancer-related genes. The aim of our study
was therefore to use a comprehensive genome-wide ap-
proach to investigate in an unbiased fashion whether
methylation subgroups including CIMP occur in GC.

Methods

Tissue samples

Formalin-fixed and paraffin-embedded (FFPE) primary
tumor and matched tumor-adjacent gastric tissue sam-
ples from 60 patients with GC were obtained from the
Department of Pathology at the National University
Hospital System, Singapore, under an institutionally ap-
proved protocol. The tumor samples were reviewed for
their tumor content and scored in deciles independently
by two experienced gastrointestinal pathologists (CLC,
BY). All 60 cases included in the study had a tumor cell
content of >70% [28]. This cohort has well-annotated
clinicopathological information including age, gender,
ethnicity, stage, location, tumor size, adenocarcinoma
subtype, differentiation, Lauren classification, lymphoid
invasion, perineural invasion, H. pylori status, history of
chronic gastritis/atrophic gastritis/intestinal metaplasia/
dysplasia, overall survival (OS), disease-specific survival
(DSS), disease-free survival (DFS) and molecular features
such as BRAF V600E, KRAS (codons 12 and 13) muta-
tion and microsatellite instability (MSI).

DNA was extracted from 20 pum sections and verified
for DNA quantity and quality as described earlier [29].
The sections were incubated for 3 days at 55°C in
200 pl of digestion buffer (10 mM Tris-hydrochloric
acid, pH8.3; 1 mM EDTA; 0.5% Tween 20) and 45 pl
of Proteinase K (20 mg/ml, Promega, Madison, WI)
without prior dewaxing. The enzyme was inactivated by
heating for 10 minutes at 94°C and then samples were
centrifuged at 12,000 ¢ for 10 minutes and stored at 4°C
without further DNA purification. DNA quantity and
quality were determined spectrophotometrically using the
NanoDrop ND-1000 (Wilmington, DE). Five hundred
nanograms of DNA was bisulfite-converted using the EZ
DNA Methylation kit (Zymo Research, Orange, CA) as
per the manufacturer’s instructions.
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For the validation of candidates, frozen tumour and
matched tumor-adjacent tissue from an independent
sample series of gastric cancers were obtained from the
National University Health System under an institutionally
approved protocol. DNA was extracted using the DNeasy
Blood and Tissue Kit (Qiagen, Hilden, Germany), quanti-
fied and bisulfite converted as described above.

BRAF mutation, KRAS mutations and microsatellite
instability (MSI)

Hotspot mutations in BRAF (V600E) and KRAS (codons
12 and 13) were detected using direct sequencing as
described previously [30,31]. MSI was determined by
analysis of 5 mononucleotide repeats, including BAT-25,
BAT-26, NR21, NR22, NR24 and NR27, as reported by
Buhard et al. [32], with tumors being defined as MSI
when >3 markers showed instability.

lllumina GoldenGate® methylation technology
Comprehensive DNA methylation profiling at 1,505
individual CpG loci contained within 807 genes using
the Illumina GoldenGate Methylation Cancer Panel I
(Ilumina, San Diego, CA) was carried out as described by
Bibikova and Fan [33]. Human sperm DNA and Universal
methylated DNA (Chemicon, Temcula, CA) were included
in each run as unmethylated and methylated controls,
respectively. Hybridized arrays were scanned using the
BeadArray Reader (Illumina). Normalization of back-
ground intensity was estimated from a set of built-in
negative controls and subtracted from each methyla-
tion data point. To assess sample quality, only those
samples having >75% loci with a detection p-value of
less than 0.05 were included for analysis. The methy-
lation level at each CpG site or the P-value was de-
fined as the ratio of the methylated allele to the sum
of the methylated and unmethylated alleles, and
ranged from O (completely unmethylated) to 1 (com-
pletely methylated).

Pyrosequencing

PCR was performed using 2 ul bisulfite DNA, 1 x reac-
tion buffer with 1 mM MgCl,, 0.8 mM deoxynucleotide
triphosphates, 1 unit of FastStart Tag DNA polymerase
(Roche Diagnostics, Mannheim, Germany) and 400 mM
each of PCR forward primer and a 1:9 mixture of PCR
reverse primer and universal biotinylated PCR primer.
PCR cycling consisted of incubation at 95°C for 4 min,
50 cycles of 95°C for 30 sec, 54°C for 30 sec and 72°C
for 30 sec, followed by a final extension at 72°C for
1 min. Pyrosequencing was performed using the Pyro-
Mark annealing buffer (Qiagen) and PyroMark binding
buffer (Qiagen), 3 pL Streptavidin Sepharose High Per-
formance beads (GE Healthcare, Stockholm, Sweden)
and 350 mM pyrosequencing primer on the PyroMark
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Q24 (Qiagen) according to manufacturer’s instructions.
The PCR forward, reverse and sequencing primers, and
pyrosequencing dispensation order were 5 -TTT GGA
AGT TAG GAT TTT GG-3', 5'-GGG ACA CCG CTG
ATC GTT TAT CAA TAA AAA AAA AAC AAC CTC
AA-3’,5'- GTT TAT TTA GGG TTG TAA TGT TTT
A-3" and CTA CGA TCT GTC AGT CGT AG respect-
ively for HOXAS, and 5'-GGA GTA AAA TAG GTG
AAA GT-3’, 5'-GCC CTT CCC CAA CCT C-3/, 5'-
GGT TTT TTT TTT TTA TTA CGT ATT-3" and GTC
AGT TGG TGA respectively for WNT5A. The sequence
of the universal biotinylated PCR primer was 5'-GGG
ACA CCG CTG ATC GTT TA-3".

Statistical analysis

Data from a total of 84 CpG sites contained within 39
X-chromosome genes on the array were removed from
the analysis to eliminate gender-specific bias. Thus,
1,421 probes across 768 genes were included for the
analyses. All statistical analyses were done in R version
2.14.2 at 5% significance level unless otherwise stated
(The R Foundation for Statistical Computing).

The rpmm function in the RPMM library was used for
the identification of methylation subgroups. Recursively
partitioned mixture model (RPMM) is a model-based
unsupervised clustering approach developed for beta-
distributed DNA methylation measurements that lie
between 0 and 1 [34]. A fanny algorithm was used for
initialization and level-weighted version of Bayesian
information criterion (BIC) as a split criterion for an exist-
ing cluster as implemented in the R-based RPMM package
[35]. For the purpose of comparison, classification of
tumor samples was also performed with the optimal num-
ber of clusters determined using the Calinski-Harabasz
pseudo F-statistic [36], and the robustness evaluated by
bootstrap resampling analysis (n = 1000). Graphical repre-
sentations of the p-values were achieved by the heatmap.
plus function with the gplots and heatmap.plus libraries.

Identification of CpG sites that were differentially meth-
ylated between tumors and matched tumor-adjacent gas-
tric tissues was performed using the paired sample t-test,
while that between methylation subgroups was done
using the ANOVA-test. A Benjamini and Hochberg false
discovery rate (FDR) cut-off of 0.001 was used, with a
Supplementary filter of a minimum difference of 0.15 in
the average P-value between the two groups, as de-
scribed earlier [37,38]. The associations of methylation
subgroups with clinicopathological and molecular fac-
tors were compared with the likelihood ratio or Fisher’s
Exact test where appropriate. Average methylation level
and frequency of methylation (on binarized data) across
methylation subgroups was compared using ANOVA
and the likelihood ratio test respectively.
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All statistical analyses were carried out using the [-
value as a continuous variable unless specified otherwise.
When p-values were binarized, a methylated threshold
of 0.297 was used [39]. Pathway analysis was performed
for KEGG pathway mapping using DAVID with a thresh-
old of EASE score < 0.05 [40-42].

Results

DNA methylation patterns in gastric tumor and
tumor-adjacent tissues

Unsupervised hierarchical clustering of methylation levels
from all 1,421 autosomal CpG sites in 60 tumor samples
revealed five distinct subgroups [Additional file 1]. No
distinct subgroups were observed for the corresponding
tumor-adjacent gastric tissues, with RPMM analysis com-
puting the number of distinct subgroups was equal to the
number of cases. These findings support the occurrence
of non-random methylation events in tumorigenesis.

A total of 219 CpG sites (185 hypermethylated and 34
hypomethylated) in 147 unique genes were significantly dif-
ferentially methylated between tumor and tumor-adjacent
gastric tissue (FDR = 0.001), with the top three CpG
sites located in HOXAS, SFRP1 and CCNA1 [Additional
file 2]. Analysis by DAVID revealed that “Pathways in can-
cer”, the “Hedgehog signalling pathway” and “Cytokine-
cytokine receptor interaction” were the top three
significant pathways revealed by genes with tumor-
specific methylation in GC (Table 1).
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GC subgroups revealed by tumor-specific CpG
methylation

Unsupervised clustering of the 219 tumor-specific CpG
methylation sites by RPMM analysis revealed six GC
clusters, denoted A-F (Figure 1). Bootstrap resampling
analysis (n = 1,000) indicated two groups were the mode
(91%) for the optimum number, hence the six clusters
were consolidated into two major subtypes denoted as L
(low methylation; clusters A-C; 28% of cases) and H
(high methylation; clusters D-F; 72% of cases). In sup-
port of this classification, the mean methylation value
(B-value) in subtype H tumors was twice that observed
in subtype L (0.603 vs. 0.305, respectively; P < 0.001).
Using a p-value threshold of >0.297 to binarize DNA
methylation levels as described previously [39], H tu-
mors also showed twice as many methylated CpG sites
(180/219, 82%) compared to L tumors (89/219, 40%; P <
0.001). When RPMM was performed on the matched
tumor-adjacent gastric mucosa using the tumor-specific
CpG sites, the samples did not cluster according to the
subtypes (L or H) of their corresponding paired tumors
[Additional file 3]. This suggests the methylation pat-
terns observed in tumors did not pre-exist in tumor-
adjacent gastric tissue and were likely to result from
somatic events.

Of the 219 CpG sites showing differential methylation
between tumor-adjacent gastric and tumor tissue, 114
were also significantly different between the H and L
tumor subgroups (FDR = 0.001) and all of these were

Table 1 KEGG pathways of significantly differentially methylated genes

Pathway Entry P value (EASE score) Genes

Different between tumor and

tumor-adjacent gastric tissue

Pathways in cancer hsa05200  0.0000014 DCC, WNTS5A, FGF5, RET, FGF8, FLT3, PPARG, TGFB3, FGF12, MMP2, GLI3,
TGFB2, WNT2, SMO, CSF3R, HHIP, CCNA1, FGF2, FGF3

Hedgehog signaling pathway hsa04340 0.0015474 WNT2, WNT5A, SMO, HHIP, GLI3, BMP6

Cytokine-cytokine receptor interaction hsa04060 0.0019703 LIF, FLT1, FLT3, FLT4, IFNG, TGFB3, CSF3R, NGFR, KDR, TNFSF8, EPO, TGFB2

Basal cell carcinoma hsa05217  0.0096687 WNT2, WNT5A, SMO, HHIP, GLI3

Hematopoietic cell lineage hsa04640 0.0098799 CD34, FLT3, CD2, CSF3R, MME, EPO

MAPK signaling pathway hsa04010 0.0201135 FGF5, FGF8, RASGRF1, NTRK2, MOS, TGFB3, FGF12, FGF2, FGF3, TGFB2

Melanoma hsa05218 0.0229304 FGF5, FGF8, FGF12, FGF2, FGF3

TGF-beta signaling pathway hsa04350 0.0437881 IFNG, TGFB3, THBS2, BMP6, TGFB2

Regulation of actin cytoskeleton hsa04810 0.0456631 FGF5, FGF8, TIAM1, INS, MOS, FGF12, FGF2, FGF3

Axon guidance hsa04360 0.0471078 DCC, EPHA7, EPHAS8, SEMA3C, FES, SLIT2

Different between tumor subtype

Hand L

Pathways in cancer hsa05200 0.0000012 DCC, WNT5A, FGF5, FGF8, RET, FLT3, MMP2, GLI3, TGFB2, WNT2, SMO,
HHIP, CCNAT, FGF3

Hedgehog signaling pathway hsa04340 0.0000843 WNT2, WNT5A, SMO, HHIP, GLI3, BMP6

Basal cell carcinoma hsa05217 0.0010110 WNT2, WNT5A, SMO, HHIP, GLI3

Cytokine-cytokine receptor interaction hsa04060 0.0194278 FLT1, FLT3, FLT4, NGFR, KDR, EPO, TGFB2
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Figure 1 Cluster diagram of 219 tumor-specific CpG sites (rows) in 60 GC tumor samples (columns). The RPMM tree and clusters (labelled
A-F) under the two major subtypes (A-C and D-F) are shown at the top of the Figure. Clinicopathological and molecular features are shown below the
cluster diagram. White rectangles are cases with missing data. History of dysplasia: yes (red), no (blue); History of intestinal metaplasia: yes (red), no (blue);
History of atrophic gastritis: yes (red), no (blue); History of chronic gastritis: yes (red), no (blue); H. pylori status: yes (red), no (blue); Perineural invasion: yes
(red), no (blue); Lymphoid invasion: yes (red), no (blue); Lauren classification: diffuse (blue), intestinal (red), mixed (yellow); Differentiation:
poor (blue), moderate (red); Adenocarcinoma subtype: mucinous (blue), signet ring (red), tubular (yellow); Tumor size: >4.5 cm (median)
(red), <4.5 cm (blue); Location: distal 1/3 (blue), middle 1/3 (red), proximal 1/3 (yellow); Stage: lll/IV (red), I/Il (blue); Ethnicity: Non-Chinese
(red), Chinese (blue); Age: >71 years (median) (red), <71 years (blue); Gender: female (red), male (blue); BRAF mutation: mutant (red),
wildtype (blue); KRAS mutation: mutant (red), wildtype (blue); MSI status: MSI (red), MSS (blue).
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hypermethylated in H but not L tumors [Additional tumors were located in SEZ6L, FLT4 and ALK. Inter-
file 4]. The three CpG sites showing the most signifi- estingly, the four most significant KEGG pathways
cant difference in methylation level between H and L  identified by the differentially methylated genes between
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tumor and tumor-adjacent gastric tissues were also
identified by the differentially methylated genes between
H and L tumors (Table 1).

Associations between clinicopathological and molecular
features and the H and L. GC subtypes defined by methyla-
tion are shown in Figure 1 and Additional file 5. GC from
female patients were almost all subtype H (16/17, 94%)
and this was significantly higher than for male patients
(27/43, 63%; P =0.024). No significant associations were
observed between the H and L subgroups and any of the
other clinicopathological or molecular features of GC.

Methylation status and genome location, polycomb
occupancy and histone modification

CpG sites that were differentially methylated between
tumor and tumor-adjacent gastric tissue as well as
between tumor subtypes H and L were referred to as
Group HG (114 loci in 78 genes). CpG sites that
were differentially methylated between tumor and tumor-
adjacent gastric tissue, but not between tumor subtypes H
and L, were referred to as Group LG (105 loci in 69
genes), while CpG sites not differentially methylated
between tumor and tumor-adjacent gastric tissue were
classified as Group NG (1,202 loci in 626 genes).

The distribution of CpG loci within CpG islands and
promoters according to their annotation in the Golden-
Gate information sheet is displayed in Figure 2A for the
NG, LG and HG groups. The proportion of CpG loci
located within CpG islands increased progressively from
NG (66%) to LG (71%) and HG (99%), with the differ-
ences between HG and LG (P < 0.001) and HG and NG
(P<0.001) being significant. This result shows that
almost all differentially methylated CpG sites in the H
group of GC were located within CpG islands.

Polycomb receptor complex-2 (PRC2) occupancy of
gene promoters by the components Suz12 and Eed has
been linked to susceptibility to methylation in human
embryonic stem cells [43]. In agreement with this, the
proportion of genes with occupancy of both factors
steadily increased from Groups NG (10%) to LG (19%)
and HG (28%) (Figure 2B). The differences between
groups NG and LG (P =0.034) and between NG and HG
(P <0.001) were significant.

The H3K4 and K3K27 trimethylation status in hu-
man embryonic stem cells has been shown to reflect
modes of gene regulation in differentiated cells, namely
constitutive expression (H3K4+ K3K27-), constitutive
repression (H3K4-K3K27+), and bivalent, or “primed”
for repression and expression (H3K4+ K3K27+) [44]. A
significantly higher proportion of Group HG genes
showed H3K4+ K3K27+ bivalent marks (62%) com-
pared to Group LG (39%, P=0.008) and Group NG
genes (19%, P < 0.001) (Figure 2C).
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CpG sites methylated according to H. pylori status

None of the CpG sites investigated showed significantly
different methylation between tumor samples of HP+
and HP- patients. However, comparison of the tumor-
adjacent gastric tissue between HP+ and HP- patients
revealed 8 differentially methylated CpG sites located
within 7 genes (CCNA1, CSPG2, DAB2IP, DIO3, FLT1,
STAT5A and TWIST1) [Additional file 6]. All 8 sites
were hypomethylated in HP+ compared to HP- cases.

Verification of differential methylation

To verify the robustness of the observed differential
methylation, pyroseqeuencing was performed to quantify
methylation at the same CpG site of the top differen-
tially methylated gene (HOXAS5) and a gene from the
top differentially methylated pathway (WNTS5A, hedge-
hog signalling) in an independent series of tumor and
matched tumor-adjacent gastric tissues from 60 subjects
with GC. The higher level of methylation in tumors
compared to tumor-adjacent gastric tissues that was
observed in GoldenGate analysis was observed again for
both HOXAS5 (mean difference =16.4%, P <0.001 by
paired t-test) and WNTSA (20.0%, P <0.001) in this
independent series (Additional file 7).

Discussion
Candidate gene studies have so far identified 77 genes
that are differentially methylated between normal and
malignant gastric tissue [27]. In the present work, the
methylation of 1,421 autosomal CpG sites located within
768 cancer-related genes was evaluated in 60 pairs of GC
and matched tumor-adjacent gastric tissue. A total of 219
CpG sites within 147 genes were found to be differentially
methylated. Only 27/77 (35%) of the genes previously
identified as being differentially methylated in the can-
didate gene studies were included in the GoldenGate
methylation arrays used here. Hence, with the excep-
tion of 6 genes (CHFR, DAB2IP, DLCI1, SFRP1, TCF4
and TFPI2), almost all of the 147 genes identified in
the present study are novel methylation markers for
GC that could be investigated further for potential
roles in gastric tumorigenesis and for early screening.
GoldenGate methylation arrays have previously been
used for comprehensive methylation studies of several
cancer types including colorectal, head and neck, renal,
breast and non-small cell lung cancer [10,39,45-47]. They
have also been used to study non-cancerous gastric mu-
cosa with respect to H. pylori infection and the presence
of malignant tissue [48]. However, the current study is the
first to apply GoldenGate methylation arrays to investigate
differential methylation between GC and matched tumor-
adjacent gastric tissues. We believe that the high-quality
tissues used in our study allows us to add value to the
available scientific knowledge. Specifically, this unbiased,
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genome-wide approach revealed the existence of six
methylation subgroups contained within two distinct clus-
ters that comprised 28% (L) and 72% (H) of GC tumors
(Figure 1). The mean methylation level of CpG loci in H
tumors was twice that of L tumors. Compared to L
tumors, H tumors were significantly over-represented with
female patients (37% vs. 6%). Despite the small number of
MSI cases (n = 4), a trend was also observed for more

frequent association of the MSI phenotype with H tumors
(9% vs. 0%).

The associations of female gender and MSI with the
high methylation (H) subgroup of GC are in line with
CIMP+ CRC, where these associations are reported
consistently. The observation that hypermethylated
CpG loci in the H subgroup are almost exclusively
located in CpG islands (Figure 2A) is also consistent
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with the definition of CIMP and with previous findings
in CIMP+ CRC [13-16,49]. In general, however, the
evidence in support of a distinct CIMP+ GC subgroup
has so far been unconvincing. Highly methylated GC
subgroups have shown contradictory associations with
the stage of disease [18,19,25,26,50], histological type
[17-19,22,50] and patient survival [17,19,20,50]. Re-
ported associations with older age [51], proximal tumor
location [18] and poor differentiation [19] have not been
confirmed by others, although more consistent associa-
tions have been reported with Epstein Barr virus infec-
tion [17,18,50], lymph node metastasis [25,51] and MSI
[20,52].

A likely explanation for the inconsistent results to date
on CIMP in GC is that studies have been limited to a
small number of genes used different methylation assays
and thresholds [5]. Array-based studies have enabled a
more comprehensive analysis of the DNA methylome. In
addition to the present study using GoldenGate methy-
lation arrays, Kim et al. recently published results using
Infinjum HumanMethylation450 BeadChip arrays that
evaluate almost 500,000 CpG sites [53]. They reported a
CIMP+ subgroup in 11 of 30 (37%) GC samples analysed.
These tumors displayed a higher frequency of oncogene
mutations including KRAS and PIK3CA. Zouridis et al.
also recently published their results on 203 GC obtained
using Infinium HumanMethylation27 BeadChip arrays
that evaluate 27,578 CpG sites [54]. These workers
reported a CIMP+ subgroup that comprised a similar
proportion (35%) to that reported by Kim et al. but was
considerably smaller than the H subgroup found in the
current study (72%). The CIMP+ subgroup described by
Zouridis et al. was also characterized by younger patient
age and worse survival. A possible source of bias in our
study was that all CpG sites evaluated by the Illumina
GoldenGate Methylation Cancer Panel I array were
within cancer-related genes. Moreover, only two or less
CpG sites were evaluated for most (86%) of these genes.
Together with the larger Illumina Infinium BeadChip
arrays, next generation sequencing will enable even more
comprehensive profiling of the methylome in GC. How-
ever, this does not necessarily imply that a distinctive
CIMP+ GC subgroup will be identified in a consistent
fashion.

HOXAS was found here to be the most differentially
methylated gene between gastric tumor and tumor-
adjacent gastric tissue (Additional file 2), with the observa-
tion of a higher methylation level in tumor replicated in
an independent series using a different experimental
technique (P < 0.001; pyrosequencing). The HOX gene
family, of which HOXAS5 is a member, is known to play
important roles in embryonic development and adult
cell differentiation [7]. HOXAS is temporally expressed
in the mesenchymal component of the developing gut [55]
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and a loss of HOXAS function can perturb intestinal mat-
uration in mice [56]. Hypermethylation of HOXAS has
been reported in several cancer types [57-61] and is asso-
ciated with decreased expression [59,62]. The present
study is the first to our knowledge to report HOXAS
methylation in GC. This finding warrants further func-
tional studies to determine whether methylation-induced
silencing of HOXAS5 is a driver event for gastric tumori-
genesis. The second most differentially methylated gene
observed here, SFRPI, has previously been reported to be
methylated in over 90% of primary GC [63].

Recursive partitioning identified a single CpG site
within SEZ6L whose methylation status could differenti-
ate the L and H GC subgroups. SEZ6L methylation has
previously been reported in GC [23] and CRC [64].
SEZ6L methylation in the gastric mucosa of non-GC
subjects has also been associated with H. pylori infection
[48]. The role of this gene in gastric tumorigenesis is
currently unclear, although it has been implicated as a
risk factor for lung cancer [65,66].

The associations between methylated genes, polycomb
occupancy and H3K4/H3K27 modifications observed
here for GC (Figure 2B and C) and elsewhere for other
cancer types suggests that aberrations in chromatin
regulation could underlie the hypermethylation pheno-
types observed in cancer. The recent introduction of
standardized methylation assay platforms with genome-
wide coverage, such as the Illumina Infinium BeadChip
arrays, should allow this area to be investigated in much
more detail in future studies.

Aberrant methylation of gastric mucosa has been
implicated in the elevated risk of GC in HP-infected
individuals [67,68]. Other studies have reported differen-
tially methylated genes between HP- and HP+ GC tissue
[48,69]. The current study did not find any genes that
were differentially methylated between HP- and HP+
GC tissue, but did find 8 genes that were hypomethy-
lated in the tumor-adjacent gastric tissue of HP+ GC
patients [Additional file 5]. Interestingly, amongst these
8 genes were DAB2IP and TWIST1, both of which
have been implicated in gastric tumorigenesis [70,71].
STATS5A was also previously observed to be hypomethy-
lated in HP+ compared to HP- tissue from non-GC
subjects [48], thus mirroring the present results in GC
patients. CDHI, FLNC and HANDI were previously
reported to be methylated in HP+ GC tissues [67-69]
using the GoldenGate array, but were not differentially
methylated in the current study. This may due to the
use of continuous versus binary values for methylation
and to the thresholds used for statistical testing. Differ-
ential gene methylation in normal gastric mucosa be-
tween HP+ and HP- individuals may reflect the fact this
pathogen is an initiating factor in the neoplastic trans-
formation of gastric mucosa.
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Conclusions Author details
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Tumors with high levels of methylation (subgroup H)
shared some features consistent with CIMP in CRC. The
methylation status of a single CpG site in SEZ6L was
sufficient to allow absolute discrimination of the L and
H subgroups of GC. Methylated genes in subtype H
were characterized by higher frequencies of polycomb
occupancy and H3K4+/H3K27+ bivalent marks, thus
providing evidence of links between the hypermethylated
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