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Abstract

Background: Known risk alleles for epithelial ovarian cancer (EOC) account for approximately 40% of the heritability for EOC.
Copy number variants (CNVs) have not been investigated as EOC risk alleles in a large population cohort. Methods: Single
nucleotide polymorphism array data from 13 071 EOC cases and 17 306 controls of White European ancestry were used to
identify CNVs associated with EOC risk using a rare admixture maximum likelihood test for gene burden and a by-probe ratio
test. We performed enrichment analysis of CNVs at known EOC risk loci and functional biofeatures in ovarian cancer–related
cell types. Results: We identified statistically significant risk associations with CNVs at known EOC risk genes; BRCA1
(PEOC¼1.60E-21; OREOC¼8.24), RAD51C (Phigh-grade serous ovarian cancer [HGSOC]¼5.5E-4; odds ratio [OR]HGSOC¼5.74 del), and BRCA2
(PHGSOC¼7.0E-4; ORHGSOC¼3.31 deletion). Four suggestive associations (P< .001) were identified for rare CNVs. Risk-associated
CNVs were enriched (P< .05) at known EOC risk loci identified by genome-wide association study. Noncoding CNVs were
enriched in active promoters and insulators in EOC-related cell types. Conclusions: CNVs in BRCA1 have been previously
reported in smaller studies, but their observed frequency in this large population-based cohort, along with the CNVs
observed at BRCA2 and RAD51C gene loci in EOC cases, suggests that these CNVs are potentially pathogenic and may
contribute to the spectrum of disease-causing mutations in these genes. CNVs are likely to occur in a wider set of
susceptibility regions, with potential implications for clinical genetic testing and disease prevention.
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Epithelial ovarian cancer (EOC) has a complex genetic architec-
ture. Genetic risk alleles include highly penetrant pathogenic
mutations in the BRCA1 and BRCA2 genes (1); rare mutations in
moderately penetrant risk genes including BRIP1, RAD51D,
RAD51C, FANCM, and PALB2 (2-5); and many common, low-risk
polymorphisms identified by genome-wide association studies
(GWAS) (6-17). The lifetime risk for ovarian cancer is 1.4% in the
general population of the United States, however, this is greatly
increased in carriers of deleterious mutations in BRCA1 and
BRCA2 (44% and 17% lifetime risk, respectively) (18). The pres-
ence of a BRCA1 or BRCA2 mutation remains the strongest
genetic risk factor for predicting a woman’s risk of EOC and is
now routinely used to guide clinical interventions, including
highly effective prevention by risk-reducing surgery. The
genetic risk alleles for EOC identified so far account for approxi-
mately 40% of the heritability, suggesting there are many
genetic risk alleles yet to be discovered (19).

The human genome harbors approximately 5000 to 10 000
structural variants (SVs), including deletions, duplications, inser-
tions, and inversions, estimated to impact up to 13% of the
human genome (20-22). By comparison, single nucleotide poly-
morphisms (SNPs) are estimated to affect approximately 0.1% of
the human genome; thus, the estimated proportion of the human
genome under structural variation is far higher than that due to
SNPs. Despite this, copy number variants (CNVs; deletions and
duplications) have not been analyzed at a similar scale as SNP
variation, because of the cost of whole genome sequencing and
technical challenges calling CNVs from genotyping arrays.

Previous studies have reported CNVs that contribute to the
disease risk of other complex diseases such as breast cancer,
pancreatic cancer, and diabetes (23-32). Similar extensive stud-
ies have not been performed in EOC cases, in part because of
difficulty identifying large genotyped EOC case-control popula-
tions that can detect rare CNVs with sufficient power (33). Two
previous genome-wide CNV analyses in approximately 1000
EOC cases and approximately 3000 unaffected controls failed to
identify CNVs associated with disease risk or survival after mul-
tiple testing correction (34,35). In the current study, we have
used genome-wide genotyping data from 13 071 EOC cases,
including 8679 high-grade serous ovarian cancer (HGSOC) cases

and 17 306 controls to identify CNVs throughout the genome
and evaluate their associations with EOC risk.

Methods

Participants

The Ovarian Cancer Association Consortium (OCAC) collated and
genotyped blood-derived DNA on the Illumina Infinium OncoArray
as previously described (6). We selected 13 071 cases and 17 306
controls of White European ancestry from OCAC studies within
countries with both cases and controls that passed genotyping
quality control measures previously described (6). All participants
signed an informed consent approved by the institutional review
board of the recruiting institution. Demographics for these partici-
pants and their CNV distributions are listed in Supplementary
Table 1 (available online) and Table 1.

CNV Calling Method

The CamCNV pipeline was used to call rare CNVs from the log R
ratio (LRR) intensity measurements for each OncoArray probe
(36). Principal component analysis adjustment was applied to
the LRR for each OCAC study to mitigate the impact of technical
batch effects. We excluded outlier probes based on LRR residual.
Remaining CNV calls after additional quality control exclusions
(see Supplementary Methods, available online) were lifted into
hg38 from hg19 for downstream analysis, using University of
California, Santa Cruz, Genome Browser liftOver.

Rare CNVs Association Analysis

A likelihood ratio test was performed to test for association with
deletions or duplications at each probe where CNVs were observed
in at least 0.05% of samples. For downstream enrichment analysis,
we used probes covered by at least 5 CNVs (20 981 probes with
deletions only, 30 917 with duplications only, and 5515 with dele-
tions and duplications). Individual copy number variants were
assigned the minimum P value of any probes they overlapped.

Table 1. Study participant age and copy number variant distributionsa

Statistical category
Controls EOC cases HGSOC cases

PEOC PHGSOC(n¼17 306) (n¼ 13 071) (n¼ 8679)

Mean age (range) 56.1 (18-97) 58.9 (16-93) 60.1 (18-93) <.001 <.001
CNV segments, No. (%)

All 91 674 69 056 46 831 — —
Deletions 46 637 (50.9) 35 165 (50.9) 23 900 (51.0) — —
Duplications 45 037 (49.1) 33 891 (49.1) 22 931 (49.0) — —

CNV segments, mean
All 5.3 5.3 5.3 .59 .68
Deletions 2.7 2.7 2.7 .78 .83
Duplications 2.6 2.6 2.6 .63 .44

Median CNV length, kb
All 22.2 21.9 21.4 .57 .91
Deletions 13.7 13.4 13.5 .68 .77
Duplications 37.1 36.7 36.1 .64 .87

Mean CNV length, kb
All 67.4 67.8 67.3 .57 .91
Deletions 44.6 44.9 44.8 .68 .77
Duplications 91.0 91.6 90.8 .64 .87

aCNV ¼ copy number variant; EOC ¼ epithelial ovarian cancer; HGSOC ¼ high-grade serous ovarian cancer.

A
R

T
IC

LE

A. A. DeVries et al. | 3

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/advance-article/doi/10.1093/jnci/djac160/6751998 by U

niversity of Bristol Library user on 26 O
ctober 2022

https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac160#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac160#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djac160#supplementary-data


Gene burden analysis was performed by assigning probes to
a single protein coding gene in the University of California,
Santa Cruz, Genome Browser’s knownGene table. Gene burden
analyses were performed using the rare admixture maximum
likelihood test (RAML) on genes with at least 5 samples carrying
a CNV (37). The Bonferroni correction based on the number of
genes tested in RAML for deletions, duplications, and both types
of CNVs combined was a P value less than 6.37E-6 for all EOC
and a P value less than 7.07E-6 for HGSOC. Because the smallest
exact P value in our RAML analysis was a P value less than 1.0E-
6, we additionally performed a binomial test using the frequen-
cies of CNVs in cases and controls within BRCA1 to obtain a
more precise P value.

GWAS and Transcriptome-Wide Association Study
Enrichment Analysis

Enrichment of CNVs at known EOC risk loci was performed at
known genome-wide statistically significant loci from the most
recent GWAS of EOC and HGSOC (Coetzee S, Dareng EO, Peng P-C,
Rosenow W, Tyrer JP, Chen S, et al, In Review) and genes identified
by transcriptome-wide association (TWAS) studies by Gusev et al.
(38) and Lu et al. (39). Analysis was performed twice; with CNVs
overlapping BRCA1 included and then excluded. Genes at GWAS
genome-wide statistically significant loci and TWAS genes (n¼ 37)
were mapped to linkage disequilibrium (LD) blocks from the 1000
Genomes (1000G) European subpopulation (40) and CNVs intersect-
ing these LD blocks retained for analysis. Enrichment was per-
formed using a foreground of CNVs associated with EOC containing
1 or more probes with a P value less than .05 in association analy-
ses. The foreground was used to generate a 1000-fold randomly
selected background. Enrichment analysis was performed in R
using FunciVar (41,42).

Functional Annotation and Noncoding Enrichment
Analysis

Functional biofeatures for 18 cell lines related to ovarian cancer
or with shared biological features of candidate precursor cell
types (Supplementary Table 3, available online) were collated for
enrichment analysis. Individual samples were processed and
analyzed as previously described (42,43) and are described in
detail in the Supplementary Methods (available online).
Enrichment was performed with FunciVar (42), using a fore-
ground of noncoding CNVs associated with EOC and/or HGSOC
and a 1000-fold randomly selected set of regions as a background.
Using these 2 lists, FunciVar then intersects each variant with
functional annotations, which in this analysis were our
ChromHMM states lifted into hg38. The significance of results is
reported as probability that foreground variants have more over-
laps with the functional annotation than background regions.

Common CNVs Tagged by SNPs

A list of SNPs in high LD (�0.8) with common CNVs identified in
1000G (44) were looked up in the most recent EOC and HGSOC
GWAS (Coetzee S, Dareng EO, Peng P-C, Rosenow W, Tyrer JP,
Chen S, et al, In Review). We applied a Bonferroni threshold to
identify CNV-tagging SNPs that were statistically significantly
associated within the nonmucinous EOC GWAS analysis, which
includes all invasive subtypes except for the mucinous histo-
type. SNPs were considered statistically significant with a P
value less than 2.09E-6.

Results

Rare CNVs at Known EOC Susceptibility Gene Loci

We identified 160 730 CNV segments, with an average of 5.3 CNVs
detected in each study participant. The median deletion size was
13.6 kb, and the median duplication size was 37.0 kb (Table 1). Rare
CNVs retained for analysis ranged from 0.003% to 2.95% frequency
(Table 1). More than 49% of deletions and 30% of duplications in
our dataset overlapped (�90% of length) with a rare CNV identified
in women of European descent in the 1000G. Gene burden analysis
was performed for all EOC cases and in HGSOC cases separately
(Bonferroni corrected significance thresholds P � 6.37E-6 and P �
7.07E-6, respectively). In both analyses, the most statistically signif-
icant risk gene was BRCA1 (PEOC < 1.0E-6, odds ratio [OR]EOC¼ 8.24;
PHGSOC < 1.0E-6, ORHGSOC¼ 7.29; Table 2; Supplementary Tables 4
and 5, available online). We identified 65 cases and 5 controls pre-
dicted to be hemizygous for a deletion, and 40 cases and 12 control
participants with predicted duplications; 105 of 13 071 (0.80%) EOC
cases, 93 of 8679 (1.1%) HGSOC cases, and 17 of 17 306 (0.098%) con-
trols harbored a predicted deletion or duplication of BRCA1
(P¼ 1.60E-21). Deletions and duplications at the BRCA1 locus are
illustrated in Figure 1, A. The most common CNV we found in
BRCA1 is a duplication at exon 13, a known relatively common
CNV also called BRCA1-ins6kbEx13 described in Mazoyer et al. (45).
This duplication is found in 20 cases and 0 controls. The most
common deletion in BRCA1 in our data is found in exon 22, where
a common deletion is known in families from the Netherlands
(46). This was found in 10 cases, 5 of which are from the
Netherlands (2.3% of all Netherlands cases have this specific CNV).
The most common CNV in BRCA2 was a previously reported (47)
deletion of exons 14-16, found in 4 cases in our study.

We found evidence of CNV EOC risk associations spanning 2
additional known ovarian cancer susceptibility gene regions:
RAD51C (PEOC¼ 7.0E-4, OREOC¼ 5.63; PHGSOC¼ 4.33E-4,
ORHGSOC¼ 4.64) and BRCA2 (deletions only; PEOC¼ 0.0062,
OREOC¼ 4.31; PHGSOC¼ 7.0E-4, ORHGSOC¼ 3.31; Table 2). Risk associ-
ations were stronger in HGSOC, consistent with previous studies
of these genes (Table 2; Figure 1, B and C) (48,49). In addition, we
found evidence of association for 12 genes not previously associ-
ated with EOC risk (P< .002; Table 2) including PRKACG, a cAMP-
dependent protein kinase catalytic subunit gamma at 9q21.11
associated with a decreased risk in all EOC cases (P < EOC¼ 5.67E-
4, OREOC¼ 0); the filamin-binding LIM protein 1 (FBLIM1) gene
locus at 1p36.21 associated with increased risk in all EOC cases
(PEOC¼ 8.50E-4, OREOC¼Not Available [NA]); and ARHGAP24 at
4q21.23, where both deletions and duplication were associated
with an increased risk for HGSOC (P¼ .00140, ORHGSOC¼ 3.97;
Table 2).

Rare CNV Association Analysis

To detect associations with individual CNVs, we restricted anal-
yses to probes intersecting deletions or duplications with a fre-
quency of at least 0.05% of samples (n¼ 16 for EOC, n¼ 13 for
HGSOC). There were 6882 probes with deletions, and 9778
probes with duplications were analyzed. We identified 16 CNVs
associated with risk for EOC or HGSOC (Table 3; Figure 2). Some
individual deletions and duplications within BRCA1 are frequent
enough to appear in this analysis, and they are the only CNVs
with P values below a significance threshold corrected for multi-
ple testing. Outside of the BRCA1 locus, the most statistically
significant deletion falls within the long noncoding LINC01194
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also known as Cancer Testis Antigen 49 (n¼ 137; P¼ .0007). The
strongest novel duplication result (n¼ 90; P¼ .0003) falls within
the seventh intron of the DCDC2 gene.

CNV Enrichment at Risk Loci Identified by GWAS and
TWAS

Statistically significant CNVs intersected LD blocks at EOC GWAS
risk regions at 7 of 27 EOC risk loci, even when BRCA1 CNVs were
excluded (P< .05; Table 4; Supplementary Tables 8 and 9, available
online). HGSOC histotype-specific GWAS regions were also statis-
tically significantly enriched for risk CNVs; statistically significant
CNVs intersected 12 of 30 loci (P< .05; Table 4; Supplementary
Table 8, available online). GWAS risk regions with a statistically
significant enrichment for CNVs intersected both known and
potentially novel causal genes. CNVs identified in all EOC cases

were statistically significantly enriched within the bodies of
TWAS genes in EOC but not HGSOC (Supplementary Table 9,
available online), and the regions defined by LD blocks around the
same TWAS genes were not statistically significantly enriched for
CNVs in either EOC or HGSOC.

EOC Risk Associations for Common CNVs

To identify common CNVs associated with EOC and HGSOC risk,
we used tag SNPs (r2 > 0.8) for common CNVs in participants of
European descent (>1% frequency). We evaluated 23 960 SNPs tag-
ging 3681 CNVs in the largest GWAS dataset for EOC and HGSOC
risk (Supplementary Table 10, available online). We identified 4
statistically significant SNPs tagging 4 CNVs at 2 loci (P< 2.09E-6) in
both the EOC (excludes mucinous EOC) and the HGSOC histotype–
specific GWAS (Figure 2, Table 5). At 9p22.2, the risk-associated

Figure 1. CNVs identified at the BRCA1, BRCA2, and RAD51C susceptibility gene risk loci in EOC cases and controls. CNVs of varying size predicting deletions (horizontal

red bars) and duplications (horizontal blue bars) in EOC cases (solid bars) and controls (faint bars) at the (A) BRCA1, (B) BRCA2, and (C) RAD51C gene loci. The location of

all probes genotyped on the Illumina OncoArray and used to “call” copy number variations are shown as vertical blue lines. CNV ¼ copy number variants.
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CNV lies between BNC2 and CNTLN, intersecting the promoter of a
long noncoding RNA and the previously identified risk SNPs for
EOC (50). The CNVs at 17q21.31 are within a common inversion
polymorphism also associated with a microdeletion syndrome and
predicted to disrupt LINC02210-CRHR1, MAPT, and KANSL1 (51,52).

CNVs Are Enriched in Active Regulatory Elements in
Ovarian Cancer–Related Cell Types

We identified 1707 and 1948 CNVs within nonprotein-coding
DNA regions associated with EOC or HGSOC risk, respectively
(P< .05; Supplementary Tables 6 and 7, available online). We
evaluated the enrichment of these CNVs in chromatin states
(weak promoter, active promoter, active region, active

enhancer, weak enhancer, insulator, and transcribed) mapped
in 18 ovarian cancer–related cell types (Supplementary Table 3,
available online) (Plummer JT, Dezem FS, Davis B, Chen S, Seo J-
H, Giambartolomei C et al, In Review). We identified statistically
significant enrichment of EOC risk CNVs in insulators and mod-
est enrichment at weak promoters (Figure 3); depletion in active
promoters; and enhancers (Supplementary Figure 1,
Supplementary Table 11, available online). Restricting the anal-
ysis to HGSOC risk CNVs to HGSOC showed a similar pattern of
enrichment (Supplementary Figure 2, available online).

Discussion

In this study, we used genome-wide genotype array probe signal
intensity data for more than 13 000 EOC cases and more than

Table 2. Gene burden testing results for rare CNVs in all EOC or HGSOC cases with a P value less than .002

Gene No. of cases No. of HGSOC No. of controls OR EOC ORHGSOC CNV typea

All cases HGSOC cases
P P

BRCA1 40 35 12 4.42 3.87 Duplication <1.00E-06 <1.00E-06
BRCA1 65 58 5 17.29 15.42 Deletion <1.00E-06 <1.00E-06
RAD51C 17 14 4 5.63 4.64 Both 7.00E-04 4.33E-04
RAD51C 14 13 3 6.18 5.74 Deletion 6.00E-03 5.50E-04
PRKACG 0 0 15 0.00 0.00 Duplication 5.67E-04 9.00E-03
BRCA2 13 10 4 4.31 3.31 Deletion 6.20E-03 7.00E-04
FBLIM1 11 6 0 NA NA Deletion 8.50E-04 4.80E-03
HAS3 12 10 5 3.18 2.65 Duplication 1.13E-02 1.20E-03
ARHGAP24 12 9 3 5.30 3.97 Both 1.39E-02 1.40E-03
LSP1 35 27 20 2.32 1.79 Both 2.41E-02 1.40E-03
SNX29 8 5 1 10.60 6.62 Duplication 1.40E-03 7.70E-03
PIP5K1B 1 0 20 0.07 0.00 Both 1.53E-03 2.73E-02
ALKBH4 6 2 0 NA NA Duplication 1.65E-03 NA
LRWD1 6 2 0 NA NA Duplication 1.65E-03 NA
LSP1 33 26 17 2.57 2.03 Duplication 2.31E-02 1.70E-03
TTLL2 8 3 1 10.60 3.97 Duplication 1.80E-03 3.29E-02
NAT1 8 6 2 5.30 3.97 Deletion 1.90E-03 6.00E-03

aCombined duplications and deletions P value result included only if it was more statistically significant than deletions or duplications alone. CNV ¼ copy number var-

iant; EOC ¼ epithelial ovarian cancer; HGSOC ¼ high-grade serous ovarian cancer; OR ¼ odds ratio; NA ¼ Not Available.

Table 3. CNVs statistically significantly associated with EOC and HGSOC with a P value less than .005

Chr
CNV

region start
CNV region

end Type
No. sig
probes Probe location OREOC PEOC

EOC
Carrier
count ORHGSOC PHGSOC

HGSOC
carrier
count

17 43 080 276 43 082 575 Duplication 7 BRCA1 coding NAa 9.72E-10 26 NAa 1.02E-11 23
17 43 049 093 43 125 836 Deletion 6 BRCA1 coding 28.6 2.57E-07 20 33.22 5.38E-07 16
6 24 221 271 24 221 660 Duplication 3 DCDC2 intronic 0.45 3.65E-04 90 0.53 9.69E-03 84
5 12 692 574 12 726 378 Deletion 7 LINC01194 LncRNA 0.53 7.22E-04 137 0.59 9.90E-03 126
9 69 064 550 69 225 129 Duplication 6 FXN, TJP2 coding 0.19 1.48E-03 24 0.19 5.51E-03 23
17 1 197 175 1 198 288 Deletion 4 ABR intronic 0.62 2.50E-03 188 0.63 9.71E-03 168
9 116 713 991 116 729 732 Deletion 4 ASTN2 coding 3.53 2.55E-03 26 3.36 9.74E-03 19
23 67 910 806 67 923 215 Duplication 3 Intergenic 2.7 3.38E-03 40 2.32 3.07E-02 30
11 1 841 637 1 886 457 Duplication 5 LSP1 intronic 2.46 4.66E-03 44 3.1 7.68E-04 31
2 50 669 275 50 697 220 Deletion 5 NRXN1 intronic 2.93 5.14E-03 30 3.32 3.74E-03 25
12 115 341 220 115 341 234 Deletion 3 Intergenic 0.3 6.58E-03 28 0.18 3.11E-03 25
10 82 776 430 82 797 323 Deletion 4 NRG3 intronic 3.91 7.09E-03 21 4.44 4.33E-03 18
9 12 350 523 12 443 586 Deletion 11 Intergenic 2.33 1.14E-02 40 3.01 1.68E-03 36
23 36 457 791 36 541 981 Duplication 4 Intergenic 0.38 1.23E-02 34 0.15 8.57E-04 28
6 168 031 413 168 196 562 Duplication 37 KIF25, FRMD1 0.85 3.81E-02 753 0.76 1.93E-03 628
1 195 862 228 195 905 802 Deletion 10 Intergenic 1.43 5.66E-02 119 1.83 2.18E-03 110

aNA: This deletion was only observed in cases; odds ratio (OR) could not be calculated. CNV ¼ copy number variant; EOC ¼ epithelial ovarian cancer; HGSOC ¼ high-

grade serous ovarian cancer.
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17 000 controls to characterize CNVs and evaluate their associa-
tions with EOC and HGSOC risk. This study represents the largest
to evaluate the contribution of CNVs to ovarian cancer risk

performed to date. Two previous studies failed to find strong evi-
dence of CNVs associated with EOC risk (34,35). Both prior studies
focused on common CNVs (>1% frequency), whereas we focused

Figure 2. A) Manhattan plots showing the results of single-probe CNV association testing. At a Bonferroni P value cutoff (blue line) of P<8.71E-7 for the all EOC cases

(based on 57 432 tests) and P<8.56E-7 for HGSOC cases only (based on 58 382 tests) identified statistically significant probes at the BRCA1 gene locus. Evidence of several

additional risk associations with a Bonferroni P value cutoff of P<5E-4, including associations at intergenic sites, are also shown. B) Manhattan plot displaying results

of common CNV analysis. At a Bonferroni P value cutoff of P<2.09E-6 based on 23 960 tag SNPs included in the lookup, we identified statistically significant SNPs at 4

loci. At these loci, there are common CNVs in high linkage disequilibrium with GWAS SNPs that may account for some of the variation leading to differences in risk at

that SNP. CNV ¼ copy number variants; EOC ¼ epithelial ovarian cancer; GWAS ¼ genome-wide association studies; HGSOC ¼ high-grade serous ovarian cancer; SNP ¼
single nucleotide variants.

Table 4. GWAS loci with CNVs associated with EOC or HGSOC risk (P< .05)

Cytoband rsID GWAS P LD block start LD block end

NMOC loci
3q28 rs9869209 6.61E-09 190508818 192626025
5p15.33 rs4449583 2.76E-21 982137 2132328
10p12.31 rs7084454 1.86E-12 19427949 22483354
17q21.31a rs146596949 1.26E-51 41743558 43694719
17q21.31a rs575499584 4.12E-18 44979537 47798656
17q21.32 rs12946636 9.92E-25 47798656 49440038
19p13.11 rs4808075 5.76E-26 16263605 18299052

HGSOC associated loci
4q13.2/4q13.3 rs4149419 2.66E-08 67989047 70183435
5p15.33 rs4449583 1.09E-19 982137 2132328
9q31.1 rs2122577 2.94E-09 103205694 104819468
9p22.1/9p21.3 rs7851336 2.54E-10 18661053 20463536
10p12.31 rs7084454 1.48E-09 19427949 22483354
13q13.1 rs11571815 4.32E-09 31727678 33202766
15q26.1 rs76119208 3.36E-09 89932319 91621162
17q12 rs11657964 2.63E-12 36141651 38653091
17q21.31 rs146596949 3.11E-56 41743558 43694719
17q21.31 rs575499584 1.69E-19 44979537 47798656
17q21.32 rs12946636 5.54E-19 47798656 49440038
19p13.11 rs56069439 8.41E-38 16263605 18299052

aBRCA1 locus. CNV ¼ copy number variants; GWAS ¼ genome-wide association analysis; LD ¼ linkage disequilibrium; HGSOC ¼ high-grade serous ovarian cancer;

NMOC ¼ all nonmucinous ovarian cancer.
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on rare CNVs, and this, along with the large difference in sample
size, likely contributed to the lack of replication. Using gene bur-
den analyses, we identified highly statistically significant dele-
tions and duplications at the BRCA1 gene locus and confirmed
these findings using single probe association testing. We also
found evidence of CNV risk associations at 2 other EOC suscepti-
bility loci: RAD51C and BRCA2. A subset of EOC cases and controls
included in this study have been previously sequenced to identify
germline BRCA1 (n¼ 89), BRCA2 (n¼ 106), and RAD51C (n¼ 8) cod-
ing variants (48,49,53), and none of the 203 patients carrying a
pathogenic mutation in any of these genes also harbored a pre-
dicted CNV in these genes. As single nucleotide variants (SNVs)
and CNVs are rare in these genes, we expect patients with con-
current pathogenic SNVs and CNVs to be extremely rare. For all 3
loci, EOC risk estimates were stronger when we restricted the
analyses to HGSOC cases only, consistent with previous studies
indicating that mutations in these genes are more strongly asso-
ciated with HGSOC.

Prior studies report pathogenic BRCA1 coding sequence
mutations at a frequency of 5.3% in HGSOC (48), and we identi-
fied CNVs at the BRCA1 gene locus in 1.1% of HGSOC cases, sug-
gesting CNVs represent a substantial contribution to the overall
prevalence of BRCA1 mutations in HGSOC cases. Previous candi-
date studies identified pathogenic deletions and rearrange-
ments involving BRCA1, BRCA2, and moderate-risk CNVs in
high-risk hereditary breast and ovarian cancer (HBOC) families
where a mutation was not identified in clinical testing (54-61),

and we identified deletions and duplications overlapping previ-
ously reported CNVs, such as deletions in exon 2-9 of RAD51C or
deletions in exons 14-16 of BRCA2 (55,57). BRCA2 CNV mutations
are rarer than BRCA1 CNVs, however, they are still estimated to
account for up to 8% of germline BRCA2 mutations (47,62-67).
The contribution of CNVs to BRCA1 varies greatly depending on
population, with CNVs being 3% of BRCA1 mutations in South
African HBOC families (68) and 27%-36% of BRCA1 mutations in
Dutch HBOC families (46,69). CNVs account for a smaller propor-
tion of BRCA2 carriers comparatively, with a Danish study of
HBOC families finding BRCA1 CNVs in 12.5% of all BRCA1 carriers
but only 2% of BRCA2 carriers (62). Most estimates of contribu-
tion are from screening individuals in hereditary breast and
ovarian cancer families rather than all ovarian cancer cases, as
in our study, which may partially account for the fewer CNVs
seen in our data. It is likely that BRCA2 and RAD51C contain clin-
ically relevant CNVs but also that other moderate-risk genes
with CNVs or structural variants would be found in a cohort
with sufficient sample size and a sensitive detection method. It
is more difficult to find estimates of CNV contribution to these
genes in nonfamilial studies. In a study of 376 000 participants
undergoing genetic testing, 12.7% of pathogenic variants in
BRCA1, 1.9% of pathogenic variants in BRCA2, and 21.1% of
pathogenic variants in RAD51C were large rearrangements (70).
The percent of all ovarian cancer patients with a CNV vs SNV as
their pathogenic mutation in these genes is not currently
available.

CNV association analyses also identified novel candidate
ovarian cancer susceptibility genes, including FBLIM1, HAS3,
and LSP1. Germline whole-exome sequencing studies have pre-
viously implicated FBLIM1 as a putative susceptibility gene in
HGSOC (71). The gene is differentially expressed between benign
and malignant murine ovarian surface epithelial cells and is
dysregulated in ovarian cancers (72,73). LSP1 is a candidate
breast cancer susceptibility gene and may interact multiplica-
tively to increase breast cancer risk for BRCA2 mutation carriers
(16,74-76), and the HAS3 gene may also be associated with the
development of chemoresistant ovarian cancer (77,78).

Rare variant association analysis detected a number of sugges-
tive associations for individual variants. Only the BRCA1 variants
with large effect sizes (OR > 10) passed the multiple-testing P
value threshold. If associations for rare CNVs are to be confirmed,
a key question is the magnitude of effect sizes we should expect
for CNVs outside the known genes. Sample size requirements
scale linearly with decreasing minor allele frequence but quadrati-
cally for decreasing odds ratios (1/j[OR - 1]) (79). When compared
with associations for common noncoding SNPs, the possible asso-
ciations in this analysis have large odds ratios ranging from 0.15
to 0.76 and from 1.83 to 4.44. It is plausible that evolutionary
younger rare variants not yet removed by negative selection can
have a stronger biological effect than older common variants.

Table 5. HRC tagSNPs in LD with known common CNVs from 1000G that are statistically significantly associated with EOC risk (hg38)a

tagSNP Chr Position
Effect
allele

Noneffect
allele

CNV
start

CNV
end

CNV
type

Length
(bp) PNMOC

No. sig
tagSNPs PHGSOC

No. sig
tagSNPs

rs10962691 9 16915107 G C 16905594 16905924 Deletion 330 1.48E-50 3 4.38E-68 3
rs17689104 17 45705126 G A 45753354 45753478 Deletion 124 3.12E-12 152 9.59E-15 152
rs17688922 17 45701985 A G 45753354 45753478 Deletion 124 3.17E-12 152 9.55E-15 152
rs8080583 17 46085231 A C 46009357 46009595 Deletion 238 1.85E-12 179 2.32E-15 181
rs8080583 17 46085231 A C 46146541 46146855 Deletion 314 1.85E-12 179 2.32E-15 181

a1000G ¼ 1000 Genomes project; CNV ¼ copy number variant; EOC ¼ epithelial ovarian cancer; HGSOC ¼ high-grade serous ovarian cancer; HRC ¼ Haplotype Reference

Consortium; LD ¼ linkage disequilibrium; NMOC ¼ all nonmucinous ovarian cancer; SNP ¼ single nucleotide polymorphism.

Figure 3. Enrichment of EOC statistically significant CNVs (P< .05) in functional

biofeatures in ovarian cancer–related cell types. EOC risk CNVs are statistically

significantly enriched in insulators across all ovarian cancer–relevant histotype

consensus groups. The total number of risk CNVs in each biofeature per histo-

type grouping can be found in Supplementary Table 11 (available online).

Abbreviations for histotypes are as follows: CCOC ¼ clear cell ovarian cancer;

EEC ¼ endometriosis (precursor cell type); FT ¼ fallopian tube secretory epithe-

lial cells (precursor cell type); HGSOC ¼ high-grade serous ovarian cancer; IOSE

¼ immortalized ovarian surface epithelium (precursor cell type); LGSOC ¼ low-

grade serous ovarian cancer; MOC ¼ mucinous ovarian cancer. CNV ¼ copy

number variants; EOC ¼ epithelial ovarian cancer.
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There is also some evidence from sequencing studies that non-
coding SVs such as CNVs are more likely to have a stronger biolog-
ical effect than SNVs. For example, Abel et al. (80) calculated that
each individual carried 122 rare variants (63% SNVs, 20% indels,
17% SVs) predicted to be deleterious, and given their relative fre-
quency, SVs are 841-fold more likely to be deleterious than rare
SNVs and 341-fold more than rare indels. We estimate that the
probe coverage on the OncoArray allows us to detect up to 10% of
the deletions and 25% of the duplications identified by the 1000G
in the 0.05% to 1% frequency range in the European population.

The most statistically significantly risk-associated deletion
impacts part of the long noncoding RNA LINC01194 (n¼ 137,
OR¼ 0.53; P¼ .0007). There is some evidence for an oncogenic
role for LINC01194 from expression analyses in colorectal tumors
(81) and prostate tumors and cancer cell lines (82).The strongest
duplication association was observed in an intron at the start of
the DCDC2 gene (n¼ 90, OR¼ 0.45; P¼ .0004). Interestingly, the
reverse strand of this gene encodes KAAG1, which has been
identified as an antigen expressed on the surface of cancer cells
in a high proportion of ovarian tumors (83). The strongest result
in the HGSOC analysis is for a duplication covering the first exon
of the LSP1 gene (n¼ 37, OR¼ 3.10; P¼ .0008) (71).

We observed enrichment of risk-associated CNVs at EOC risk
loci identified by GWAS. A wide variety of genetic variation, includ-
ing SNVs and CNVs at GWAS loci, may contribute cumulatively to
observed signal through aggregation by LD, and CNV analysis may
implicate candidate genes for further functional analysis. Most
EOC-risk associated variants identified by GWAS lie in noncoding
DNA regions. In our study, noncoding risk-associated CNVs were
enriched in weak promoters and insulators (bound CTCF motifs),
suggesting they mediate gene expression through their interaction
with regulatory elements and the 3-dimensional structure of the
genome. Studies have shown germline risk variants and CNVs
altering CTCF sites underlie some human diseases (84,85).

We have used genome-wide analysis to identify rare CNVs
associated with ovarian cancer risk, including at known EOC
susceptibility gene loci BRCA1, BRCA2, and RAD51C. Given the
frequency at which we detected these CNVs, it may be appropri-
ate to expand the content of genetic risk assessment panels for
breast and ovarian cancer to universally include coverage of
CNVs at BRCA1, BRCA2, and RAD51C as likely pathogenic var-
iants where such testing is not already standard (86). CNVs
likely represent a missing fraction of heritability for ovarian
cancer at known susceptibility genes and as independent risk
variants. Evaluating the frequency of CNVs in larger EOC case-
control populations and with whole genome sequencing on a
population scale is warranted to improve our understanding of
the genetic architecture for EOC.
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