29 research outputs found

    Genetic diversity in Campylobacter jejuni is associated with differential colonization of broiler chickens and C57BL/6J IL10-deficient mice

    Get PDF
    Previous studies have demonstrated that Campylobacter jejuni, the leading causative agent of bacterial food-borne disease in the USA, exhibits high-frequency genetic variation that is associated with changes in cell-surface antigens and ability to colonize chickens. To expand our understanding of the role of genetic diversity in the disease process, we analysed the ability of three C. jejuni human disease isolates (strains 11168, 33292 and 81-176) and genetically marked derivatives to colonize Ross 308 broilers and C57BL/6J IL10-deficient mice. C. jejuni colonized broilers at much higher efficiency (all three strains, 23 of 24 broilers) than mice (11168 only, 8 of 24 mice). C. jejuni 11168 genetically marked strains colonized mice at very low efficiency (2 of 42 mice); however, C. jejuni reisolated from mice colonized both mice and broilers at high efficiency, suggesting that this pathogen can adapt genetically in the mouse. We compared the genome composition in the three wild-type C. jejuni strains and derivatives by microarray DNA/DNA hybridization analysis; the data demonstrated a high degree of genetic diversity in three gene clusters associated with synthesis and modification of the cell-surface structures capsule, flagella and lipo-oligosaccharide. Finally, we analysed the frequency of mutation in homopolymeric tracts associated with the contingency genes wlaN (GC tract) and flgR (AT tracts) in culture and after passage through broilers and mice. C. jejuni adapted genetically in culture at high frequency and the degree of genetic diversity was increased by passage through broilers but was nearly eliminated in the gastrointestinal tract of mice. The data suggest that the broiler gastrointestinal tract provides an environment which promotes outgrowth and genetic variation in C. jejuni; the enhancement of genetic diversity at this location may contribute to its importance as a human disease reservoir

    Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years

    Get PDF
    Background: The erosion of the early mortality advantage of elective endovascular aneurysm repair (EVAR) compared with open repair of abdominal aortic aneurysm remains without a satisfactory explanation. Methods: An individual-patient data meta-analysis of four multicentre randomized trials of EVAR versus open repair was conducted to a prespecified analysis plan, reporting on mortality, aneurysm-related mortality and reintervention. Results: The analysis included 2783 patients, with 14 245 person-years of follow-up (median 5·5 years). Early (0–6 months after randomization) mortality was lower in the EVAR groups (46 of 1393 versus 73 of 1390 deaths; pooled hazard ratio 0·61, 95 per cent c.i. 0·42 to 0·89; P = 0·010), primarily because 30-day operative mortality was lower in the EVAR groups (16 deaths versus 40 for open repair; pooled odds ratio 0·40, 95 per cent c.i. 0·22 to 0·74). Later (within 3 years) the survival curves converged, remaining converged to 8 years. Beyond 3 years, aneurysm-related mortality was significantly higher in the EVAR groups (19 deaths versus 3 for open repair; pooled hazard ratio 5·16, 1·49 to 17·89; P = 0·010). Patients with moderate renal dysfunction or previous coronary artery disease had no early survival advantage under EVAR. Those with peripheral artery disease had lower mortality under open repair (39 deaths versus 62 for EVAR; P = 0·022) in the period from 6 months to 4 years after randomization. Conclusion: The early survival advantage in the EVAR group, and its subsequent erosion, were confirmed. Over 5 years, patients of marginal fitness had no early survival advantage from EVAR compared with open repair. Aneurysm-related mortality and patients with low ankle : brachial pressure index contributed to the erosion of the early survival advantage for the EVAR group. Trial registration numbers: EVAR-1, ISRCTN55703451; DREAM (Dutch Randomized Endovascular Aneurysm Management), NCT00421330; ACE (Anévrysme de l'aorte abdominale, Chirurgie versus Endoprothèse), NCT00224718; OVER (Open Versus Endovascular Repair Trial for Abdominal Aortic Aneurysms), NCT00094575

    Resource discovery for distributed computing systems: A comprehensive survey

    Get PDF
    Large-scale distributed computing environments provide a vast amount of heterogeneous computing resources from different sources for resource sharing and distributed computing. Discovering appropriate resources in such environments is a challenge which involves several different subjects. In this paper, we provide an investigation on the current state of resource discovery protocols, mechanisms, and platforms for large-scale distributed environments, focusing on the design aspects. We classify all related aspects, general steps, and requirements to construct a novel resource discovery solution in three categories consisting of structures, methods, and issues. Accordingly, we review the literature, analyzing various aspects for each category

    Structure determination by MALDI-IRMPD mass spectrometry and exoglycosidase digestions of O-linked oligosaccharides from Xenopus borealis egg jelly

    No full text
    Differences in the fertilization behavior of Xenopus borealis from X. laevis and X. tropicalis suggest differences in the glycosylation of the egg jellies. To test this assumption, O-linked glycans were chemically released from the egg jelly coat glycoproteins of X. borealis. Over 50 major neutral glycans were observed, and no anionic glycans were detected from the released O-glycan pool. Preliminary structures of ∼30 neutral oligosaccharides were determined using matrix-assisted laser desorption/ionization (MALDI) infrared multiphoton dissociation tandem mass spectrometry (MS). The mass fingerprint of a group of peaks for the core-2 structure of O-glycans was conserved in the tandem mass spectra and was instrumental in rapid and efficient structure determination. Among the 29 O-glycans, 22 glycans contain the typical core-2 structure, 3 glycans have the core-1 structure and 2 glycans contained a previously unobserved core structure with hexose at the reducing end. There were seven pairs of structural isomers observed in the major O-linked oligosaccharides. To further elucidate the structures of a dozen O-linked glycans, specific and targeted exoglycosidase digestions were carried out and the products were monitored with MALDI-MS. Reported here are the elucidated structures of O-linked oligosaccharides from glycoproteins of X. borealis egg jelly coats. The structural differences in O-glycans from jelly coats of X. borealis and its close relatives may provide a better understanding of the structure–function relationships and the role of glycans in the fertilization process within Xenopodinae
    corecore