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Abstract

Large-scale distributed computing environments provide a vast amount of heterogeneous computing resources from different
sources for resource sharing and distributed computing. Discovering appropriate resources in such environments is a challenge which
involves several different subjects. In this paper, we provide an investigation on the current state of resource discovery protocols,
mechanisms, and platforms for large-scale distributed environments, focusing on the design aspects. We classify all related aspects,
general steps, and requirements to construct a novel resource discovery solution in three categories consisting of structures, methods,
and issues. Accordingly, we review the literature, analyzing various aspects for each category.

Keywords: distributed systems, resource sharing, resource description, P2P, Grid computing, HPC

Acronyms

ACO Ant Colony Optimization.

AI Artificial Intelligence.

ANN Artificial Neuron Network.

ASL Average Search Length.

AVL Georgy Adelson-Velsky and Evgenii Landis.

BCA Bee Colony Algorithm.

BF Bloom Filter.

BFS Breadth First Search.

BOINC Berkeley Open Infrastructure for Network Computing.

Cell BE Cell Broadband Engine.

CP Client Proxy.

CPU Central Processing Unit.

DAML DARPA’s Agent Markup Language.

DFS Depth First Search.

DHT Distributed Hash Table.

DIS DHT Information Service.

DNS Domain Name System.

DOS Distributed Operation System.

DoS Denial of Service.

FALKON Fast and Light-Weight Task Execution Framework.

FPGA Field Programmable Gate Array.

GIIS Grid Index Information Service.

GIS Grid Information Service.

GMD Grid Market Directory.

GPU Graphics Processing Unit.

GRIS Grid Resource Information Service.

HPC High Performance Computing.

HTC High Throughput Computing.

LDCE Large-scale Distributed Computing Environment.

MAS Multi Agent System.

MBFS Modified Breadth First Search.

MDS Monitoring and Discovery System.

MTC Many Task Computing.

NoC Network on Chip.

OIL Ontology Inference Layer.

P2P Peer-to-Peer.

PA Primary Attribute.

QoS Quality of Service.

RAM Random Access Memory.

RCaT Resource Category Tree.

RD Resource Discovery.

RDF Resource Description Framework.

SIMD Single Instruction, Multiple Data.

SLA Service Level Agreements.

SOA Service Oriented Architecture.

SOC Self Organized Cloud.

SON Semantic Overlay Network.

SP Server Proxy.

TORQUE Tera-scale Open-source Resource and Queue Management.

TTL Time To Live.

UDDI Universal Description, Discovery and Integration.

VEE Virtual Execution Environment.

VEEH Virtual Execution Environment Host.

VEEM Virtual Execution Environment Management System.

VM Virtual Machine.

VO Virtual Organization.

WRMS Workload and Resource Management System.

WSDL Web Services Description Language.

XDR External Data Representation.

XML Extensible Markup Language.

Preprint submitted to Journal of Parallel and Distributed Computing June 21, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/154354734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

In recent years, large-scale heterogeneous computing infras-
tructures such as Grids [1], Clusters [2], Clouds [1] or even the
simultaneous combination of multiple platforms (e.g., Clusters,
Grids, and Clouds used concurrently) have become increasingly
widespread. This happened due to the development of manycore
technologies and associated advances in high-performance and
distributed computing. Despite the fact that these platforms pro-
vide distinct computing environments, they have a fundamental
common key property; the ability to share resources/services
belonging to different administrative domains among all the
entities distributed across the whole system. Resource shar-
ing produces significant benefits exploring the idle cycles of
potentially available resources over the system by integrating,
leveraging, and utilizing the potential of these myriads of individ-
ual available resources to achieve higher computing capabilities.
The novel challenges arise from the fact that it would not be
feasible to statically maintain the global knowledge of all the
available distributed sharing resources for the existing entities
in a dynamic Large-scale Distributed Computing Environment
(LDCE). Indeed, one of the most challenging essential issues in
such environments is the problem of resource discovery where
each entity in the system has to be able to potentially explore and
involve the desired resources to attain the relegated computations
and services.

Resource discovery encompasses locating, retrieving, and ad-
vertising resource information, being an essential building block
for fully exploiting all distributed resources in the system. The
purpose of resource discovery in a LDCE is to enable the adapta-
tion of the application’s demands to the resources potentials by
discovering and finding resources with a deep understanding of
the resource specifications according to application’s resource
requirements. However, considering the nature of LDCE, any
approach for resource discovery in such environment needs to
be qualified in some challenging issues such as scalability, effi-
ciency, heterogeneity, and reliability. As discussed in this paper,
there are considerable amounts of research works done in the
area of resource discovery which study these challenges in dif-
ferent aspects pursuing assorted objectives. In this paper, we
provide a survey of the discovery protocols and their relevant
aspects specific for large-scale computing. We describe all the
potential related concepts and terminologies. Accordingly, we
provide a taxonomy to categorize the various discovery sys-
tems and techniques while we analyze and compare different
approaches. We also limit our study to discovery solutions
which are applicable to be employed in LDCE. Although this
paper does not highlight discovery aspects related to security,
synchronization, and information summarization due to space
constraints.

There are several surveys on resource discovery protocols
in the current literature [3–9]. However, most of these works
are limited, as they do not provide a comprehensive review of
discovery approaches with respect to all key potential aspects
of resource discovery in distributed systems. For example, the
works [3, 4, 6] only discuss discovery approaches for Grid sys-
tems while the works [5, 7–10] only investigate approaches for

Peer-to-Peer (P2P) systems. Works such as [11–13] are much
more limited in scope and dimension, and as such do not pro-
vide a complete view covering major aspects of discovery in
distributed systems. Furthermore, comparing to this paper, none
of these related works available in the literature discussed the
evaluation aspects of discovery protocols. Moreover, this paper
presents a fundamentally different approach to reviewing the cur-
rent literature, introducing a practical research approach which
can efficiently help researchers to design and develop novel dis-
covery approaches in the area of distributed computing systems.
Contrary to the other studies mentioned above we specify a set
of major discovery relevant aspects first, and then we classify
and discuss discovery approaches from the perspective of each
particular aspect.

In this paper, we define a resource as any source of supply
[12]. In the specific case of large-scale computing, we limit
the definition of resource to computing resources that mean any
element which is directly involved in computing process such
as Central Processing Unit (CPU)-capabilities, Random Access
Memory (RAM), disk space, communication and network capa-
bilities, etc.

2. Relevant Discovery Aspects

For proposing a resource discovery solution, there are sev-
eral fundamental open issues and involved elements which have
significant impacts on the final discovery behavior, operation,
and functionality. These may also affect the way that a resource
discovery approach can deal with particular challenging require-
ments and objectives. In this paper, we have categorized and
explained all the major general concepts, structures, techniques,
and functionalities that shape the critical aspects of every re-
source discovery models in three classes, as described below.

1. Underlying Aspects contain all the things that should be
prepared and configured before discovery usage (e.g., stat-
ing a query). These aspects are more relevant to the un-
derlying computing environment, network topology data
infrastructure, representation of resources (using resource
description models/languages), and resource information
distribution (in terms of architecture).

2. Design Aspects include the current major possible relevant
techniques, strategies, and methods that can be used to
guide queries between distributed entities for locating and
discovering resources. Search algorithms, mechanisms
for packet propagation (i.e., communication models for
distributing query/resource information across the network),
querying strategies, resource information delivery, data
synchronization between distributed resource providers,
and information summarization techniques (for compact
querying with minimizing the size of query data transferred)
are examples of such elements.

3. Evaluation Aspects cover all the concepts and terms that
express, demonstrate or evaluate the expected or desired
achievements of the resource discovery procedure. Depend-
ing on the specific environment, applications and objectives
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Figure 1: Classification of the relevant resource discovery aspects.

that a discovery protocol has been designed for, the number
of certain functionalities, features and performance factors
can become critically important to attain. For example, for
the resource discovery in wireless sensor networks, energy
efficiency is one of the critical performance factors while
in the area of large-scale computing, scalability has the key
role.

Figure 1 illustrates the relationships between the aspects men-
tioned above. The figure also demonstrates a research path to
design new resource discovery protocols for distributed systems.
It can be depicted as a very coarse-grained workflow (tutorial)
which provides an overall research map to researchers that aim
to propose discovery approaches. In the first step, underlying
aspects must be investigated. Accordingly, it is needed to in-
troduce strategies to build underlying structures. In the next
step, there are a set of design aspects which must be taken into
account in order to propose a novel discovery approach. This
includes a detailed review of current conventional methods in
the literature, addressing different design aspects. Finally, in
the last step, after developing a discovery proposal, this must be
assessed accordingly to several evaluation aspects. Researchers
pursue different objectives for proposing a discovery approach.
Therefore, evaluation aspects emphasize on various desired fea-
tures, dealing with different challenges.

In the continuation of this paper, we discuss and explain the
elements mentioned above which play a vital role in designing
and operating of resource discovery protocols.

3. Underlying Aspects

In this section, we discuss resource discovery approaches
in the literature from the perspective of the more fundamental
underlying aspects. The underlying aspects are related to any

fundamental basis (such as architectures, structures, and envi-
ronments) which provide the ground (basic infrastructure) for
the act of resource discovery. We first elaborate on the general
architectures of distributed systems including advantages and
disadvantages, and how these can fit with the resource discovery
requirements. Accordingly, we explore the resource discov-
ery literature concerning characteristics of different specific,
real-world, computing systems/environments, based on various
distributed architectures. Furthermore, we discuss ontology and
resource description approaches which are required to describe,
abstract, and organize information on hardware resources (and
their capabilities), presented in a computing environment. This
information and abstractions, in turn, can be used to construct
virtual overlays on top of real physical systems through applying
clustering approaches. An overlay (or a virtual overlay net-
work) is a structure which provides underlying data and virtual
topology to facilitate building discovery components and ser-
vices. The section will end by discussing common approaches
for clustering and overlay construction.

3.1. Architectures For Resource Discovery

In the distributed system, before designing a resource discov-
ery model, it is necessary to examine the general distribution
options in environments and clarify an architecture depending
on the application, adaptation to the target computing environ-
ment and a set of other critical involved parameters. From the
state-of-the-art [3, 4, 14–18], we can categorize the discovery ar-
chitectures in four distinguishable groups which are centralized,
decentralized, hybrid (e.g., decentralized-tree and decentralized
mesh), and hierarchical.

In the centralized case (e.g., [19–23]) (Figure 2), the resource
information about all other nodes and instances is located at a
central point, that can be reached by all service or resource re-
quester instances in the environment. All the resource providers
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periodically update and register their dynamic or static informa-
tion in the central repository. The central information service
is the only entity in the system who can process the queries,
initiated by resource requesters, for matching to the resources
available. The centralized discovery has the advantage that the
information source is always known and that reallocation of
services/resources can be more easily propagated. At the same
time, the central information service becomes a bottleneck and
a single point of failure. In fact, fully centralized systems often
do not scale well.

Figure 2: Centralized architecture.

As opposed to the centralized architecture, in the decentral-
ized case (e.g., [14, 24, 25]) (Figure 3), all (or, at least, several)
nodes have to host at least the base information and capabilities
related to query processing and management. Thus, requesters
do not need to ask a central instance for query analysis and
receiving information about the desired resources every time.
Accordingly, the system becomes more failure resilient and in
particular much more scalable. However, depending on the use
case, the degree of distribution can quickly lead to a manage-
ment communication overhead if all nodes have to share the
same information from different endpoints. In such situation,
the decentralized approach leads to an all-to-all communication
(e.g., query flooding) across the whole network. But, it might be
possible to reduce the overhead from all-to-all communication
(broadcast) to one-to-many (multicast or anycast) or one-to-one
(unicast) communication by using mechanisms such as selective
search and multicasting (refer to Section 4.3).

Figure 3: Decentralized architecture.

Nevertheless, it is always harder to keep track of potential
query-resource reallocations (caching), as the resource informa-
tion (e.g., resource location) either has to be distributed to all
possible communication points, or some mechanisms for routing
and updating have to be introduced.

Assuming that we have n nodes in a centralized system, the
minimum/maximum query cost is one message (regardless of

returning messages) since a requester can simply send a query
to a central master-node which can process the query and return
a proper response by analyzing all information of resources,
collected in the master-node. The query cost might be two mes-
sages if the master-node only processes static specifications of re-
sources. In such a case, the master-node may send a query to the
corresponding resource node for checking dynamic information
on the site. The centralized system also has maintenance cost
since resource information might be changed during runtime.
Assuming that all nodes periodically update their information
on the master-node, the maximum maintenance cost per inter-
val is n − 1 messages since all nodes (except the master-node)
must send an update message (including changes of resource
information) to the master-node in each interval of time. In fact,
centralized architectures provide efficiency concerning the query
cost while they may not be efficient in terms of the maintenance
cost.

In (fully) decentralized models, there might not be a main-
tenance cost, but the query cost is proportionally higher than
centralized architectures. The minimum query cost is one mes-
sage if we assume that the query will be resolved by the first
visited node. The maximum query cost is n messages if we
assume that all nodes in the system will be visited exactly once.
Theoretically, the worst situation can happen when resolving
a query requires all-to-all communication among all nodes in
the system, resulting in a maximum query cost of n(n − 1) mes-
sages. However, this may not happen in real scenarios since
even a single node in the system can resolve any query by broad-
casting n − 1 messages to all nodes in the system. The query
response will be deterministic since all nodes are explored by
broadcast messages. Further discussion on this topic is presented
in Section 4.3.2 for different specific search methods.

We can also compare centralized models to decentralized ar-
chitectures in terms of deterministic results for queries. A query
is deterministic if a decision can be guaranteed as the query
result. In a centralized structure, the master node can provide
a deterministic response whether the resource required for a
given query is available in the system or not. But, in a decen-
tralized model, depending on the case and the given query, a
deterministic response may not be attainable unless all nodes are
visited systematically or algorithmically. Visiting all nodes (or
potential nodes) in the system increases the query cost. Further-
more, in decentralized models, if an adequate search method is
not conducted, queries can be propagated indefinitely by revisit-
ing redundant nodes (loops). This means that in decentralized
models we may not receive a deterministic query response or if
achieved it would be costly (in terms of query cost/overhead).
A common strategy to overcome such issues is to use query
termination techniques (refer to Section 4.6).

The hybrid models benefit from a combination of features of
both centralized and decentralized architectures. Decentralized-
tree (e.g., [26, 27]) (Figure 4) and decentralized-mesh (e.g., [28])
are types of hybrid architecture which have been designed to
aggregate the advantages of the traditional architectures while
reducing their shortcomings. As a practical example of this
kind, we can mention the resource discovery in a manycore envi-
ronment, where the individual resource description sources can

4



encapsulate multiple levels of aggregated resources. This higher
level information can either integrate all lower-level resource
descriptions or provide a more holistic view of the information
by using abstraction. Either choice affects the communication
strategy as more information implies a higher amount of data
(and associated maintenance), while more abstract data implies
that additional queries may have to be executed for acquiring
details that are potentially required.

Figure 4: Decentralized-Tree architecture.

The hierarchical architecture (Figure 5) through which the
relevant information is propagated in a hierarchical fashion, i.e.,
through locally connected layers that each, in turn, is connected
to lower layers. This way, the information does not need to be
propagated throughout the whole network, and the communica-
tion overhead is restricted to the substructure. However, at the
same time, propagating the layers adds delay due to the messag-
ing route so that lower levels will get access to the information
later than higher levels.

A hierarchical structure can be established either statically
or dynamically. For static hierarchies [29], the architecture can
be configured by manually defining layers, members of each
layer and relationships between layers/members. For dynamic
hierarchies [30], the structure can be configured dynamically
through self-organization of nodes in tree-like structures. Hier-
archical models generally consist of three layers for processing
resource information. These layers include physical resource,
logical resource information and index information (top index or
child-top indexes). The physical resource layer is at the lowest
level containing real physical hardware resources of the system,
connected through network links. Each logical resource (i.e.,
resource or resource node) represents specifications/character-
istics of a physical resource in the second layer. Resources are
connected through a star topology with a central super-node,
positioned in the third layer (index information layer). Each
group of resources with a super-node may referred to as a Vir-
tual Organization (VO) (e.g., in Grid computing, refer to Section
3.2.1). A super-node maintains all information of VO members
(resources) through index tables (e.g., MasterTableViews for top-
index super-nodes, GridTableView for child-index super-nodes,
and DetailTables for resources). The super-nodes, in turn, can
be connected through a ring topology.

All nodes in a hierarchical system must locally maintain a set

of information which are necessary for specifying their positions
in the hierarchy. For example, a member node (resource) may
contain information such as its detailed specifications, its role in
the hierarchy (which can be ”leaf-node” for member nodes) and
the address of a super-node (its super-node ID). Similarly, each
node with a ”super-node” role may include indexed information
of its leaf-node members as well as their leaf-node IDs. The
initial allocation of these information can be done statically or
dynamically, as we mentioned earlier. The initial information
can also be changed dynamically during runtime.

Figure 5: Hierarchical architecture.

The generic hierarchical architecture, mentioned above, can
also be extended to support further layers by defining two types
of super-nodes: child-index and top-index super-nodes, using the
same star topology for both. A top-index provides aggregating
information about a set of child-index nodes, and a child-index
includes indexing information regarding a set of resources. The
updating and maintenance of information in the index tables can
be performed through periodical updating of state information
(either by super-nodes or nodes). Furthermore, depending on
the situation, the communication between a super-node and its
member nodes can be done through unicast (e.g., for updating
the state of a resource in the index-table by a resource-node)
or multicast (e.g., for querying multiple resource-nodes by a
super-node), where a multicast group includes all members of a
super-node.

We must note that the hierarchical model can also be con-
sidered as a hybrid architecture since it combines aspects of
both centralized approaches (it has a single head/master) and
decentralized approaches (it requires communications with mul-
tiple levels of nodes, positioned in a hierarchy, to answer a
query/request). However, in this survey, we consider the hierar-
chical model as a separated architecture since it is a well-known
structure which is widely used in many works (e.g., see Section
3.2.1-B), in the area of distributed computing systems.

3.2. Computing Environments

The computing environment has a large impact on the architec-
ture, operation, implementation methods, and the performance
of resource discovery protocols. In this section, we describe
and classify current resource discovery approaches for the most
important (and more conventional) large-scale computing envi-
ronments including Grid, P2P, Cloud, and Cluster (see Figure
6).

3.2.1. Grid Systems
Grid computing [1, 2] generally contains plenty of hetero-

geneous resources which potentially are loosely coupled and
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Figure 6: Large-scale computing environments.

geographically distributed. This “large group of resources” (de-
vices, data, applications, services, storage, sensors, computa-
tional clusters, parallel supercomputers and any other sort of
computing or communicating resources) act together as a sin-
gle super-powerful computing system to perform large tasks.
The Grid has originally been designed to efficiently map the
user’s jobs to the most appropriate free resources. For process-
ing user’s jobs, it is essential to get resource information in a
minimum time. There are various types of Grids depending
on their specific objective and focus such as data, application,
service, knowledge, interaction, utility, and computing Grid. In
this paper, we mainly address on computing Grids.

Resource discovery in Grid systems aids in resource manage-
ment and application scheduling and generally suffers from two
major challenges: efficiency and complexity. First, the major-
ity of the existing Grid Information Services (GISs) [31] (like
Monitoring and Discovery System (MDS) [32]) will organize
their resources based on non-adaptive overlays where the cate-
gorization of resource characteristics and information doesn’t
play any role in the overlay construction, being dependent on
the virtual organization and administrative parameters. In fact,
a non-adaptive (non-compatible) overlay does not benefit from
the resource description approach which is used to describe Grid
resources for the purpose of clustering and overlay construction.
The incompatibility between the overlay clustering mechanism
and the resource description model (in Grids) leads to inefficient
query forwarding across the whole system while a resource-
aware overlay clustering could reduce the discovery overhead
significantly by limiting the query traversing area. The second
challenge is providing the capability for Grid discovery to per-
form complex querying. Grid job schedulers are responsible for
allocating user’s tasks to the most appropriate resources. Basic
querying techniques like exact-matching are not enough to pre-
cisely map the job’s requirements to the resources specifications.
The drawback is that the exact matching heavily depends on the
exactness of the query’s conditions and it requires to specify the
exact job’s requirements, which might be not feasible in practice.
In other words, exact matching strategies are not suitable for
approximate matching when the exact demands of the jobs are
not clear. Moreover, exact matching ignores the resources which
have specifications overqualified for the job’s requirements. This
leads to underutilization of the system’s resources, causing the
overqualified resources to be idle when exact matching fails.
Thus, leveraging multiple complex querying techniques such

as keyword search, range querying, partial matching, multidi-
mensional and resource graph querying becomes a necessity to
perform adequate job/resource matching.

Resources in Grid are defined as a set of attributes. A query
simply describes the specific desired values for some of the
attributes. A simple example of a query is like “processor fre-
quency=1.7 GHz” where the discovery process locates all the
processing resources in the system which have exactly a 1.7
GHz processor. However, complex range querying like “2.1
GHz > processor frequency > 1.7 GHz” or multidimensional
querying like “A1=V1, A2=V2, V4 > A3 > V3” generally are
not supported in Grid environments. We will discuss complex
querying issues in detail later.

Multiple Grid-based resource discovery approaches have been
proposed to enable a GIS. They can be categorized in centralized,
hierarchical, decentralized and hybrid systems according to their
main approaches to the discovery problem. Table 1 presents
examples of resource discovery in Grid systems.

A) Centralized-Grid: Centralized model is the simplest
approach for creating an information service, where it is con-
structed by establishing a centralized directory agent. The major
advantage of this solution is the simplicity of finding all re-
source information on the central server, making the resource
discovery latency low, and data coherence high. However, these
approaches suffer from sub-optimal scalability and lower fault
tolerance, mostly due to the centralized nature of the directo-
ries, as discussed previously in Section 3.1. Nimrod-G [33] and
Condor-G [34] are the examples of Grid super-schedulers where
they have employed a centralized Grid information services such
as R-GMA[35–37], Hawkeye[37, 38] and Grid Market Directory
(GMD) [39] to index their resource information.

B) Hierarchical-Grid: Another approach for discovery in
Grids relies on hierarchically organized servers. In MDS [32,
41], the top index server answers requests either directly or by
dispatching them to its child index servers. This approach has
limited scalability, as requests trickle through the root server,
which can easily become a bottleneck and consequently suffer
from fault tolerance issues. Indeed, the loss of a node in the
higher level of the architecture causes the loss of an entire sub-
tree. Ganglia [45], MDS-3 [47], and MDS-4 [43, 44] are other
examples of hierarchically designed GIS.

C) Decentralized-Grid: In decentralized Grid discovery, the
information requester and the information provider (or resource
broker) are two discovery agents which interact with each other
in a self-organizing and self-adapting manner. The broker agent
contains a resource information database that must be discovered
from other Grid peers, to provide a global knowledge view to
the local information requesters. The concept of decentralized
discovery systems in Grid is related to the idea of peer to peer
computing wherein there is no central server in the system. We
discuss further details of these approaches, separately in Section
3.2.3, which present discovery approaches benefiting from a
mixture of P2P and Grid.

D) Hybrid-Grid: Hybrid approaches have been specially
designed to provide a high level of scalability and fault tol-
erance, which is required in large-scale environments. They
are proposed to enhance and extend the natural capabilities of
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Table 1: Examples of resource discovery in Grid-based systems (DS: Discovery System).
DS Base Mechanism

G
M

D
[4

0] Centralized-Grid Provides a web-based approach for managing resources in Grid systems. It consists of two main components: a portal manager and query web service.
Grid users can share and register their resources in Extensible Markup Language (XML) format manually in the central resource information repository,
using the portal manager. Clients can search for their required resources in the central database using the query web service. The central node is the
only peer in the system which can gather and store resource information and perform the query processing. Therefore, it easily becomes a bottleneck.
Like as any other centralized system it suffers from poor scalability. Furthermore, resource owners should manually update their resource information,
as GMD doesn’t support dynamicity in all aspects (e.g., dynamic attributes, dynamic topology). However, it supports some complex querying features
such as multidimensional and range querying since it has a central database to store resource information which those kinds of queries easily can be
supported.

M
D

S-
2

[3
7,

41
] Hierarchical-Grid Designed to enhance the primary version of MDS in order to be adapted in a hierarchical environment. It has two main components, a configurable

Grid Resource Information Service (GRIS) and a directory component called Grid Index Information Service (GIIS). They are organized in a hierarchy
where the higher nodes host GIIS and the lower nodes host GRIS. The information providers register and store all the resource information of their
local resources such as static and dynamic attributes and their specific virtual organization policies in the aggregate directories in the higher level using
GIIS. Consequently, resource providers periodically update their local resource status in their registered directories. If an information provider after a
given interval fails to update the directory, GIIS assumes that the information provider is not available anymore and it removes the provider from the
index list of validated GRIS.

M
D

S-
3/

4
[4

2–
44

] Hierarchical-Grid (tree-
style)

Proposed refinements of MDS-2. They follow a tree-style hierarchy within a VO to dictate node resource information dissemination. A virtual
organization is a group of Grid peers that agree on some common resource sharing policies. Every VO designates a node that hosts all the local
resource information. These representative nodes register themselves in the related directories where they are organized in the hierarchy, based on
specific resource information. In MDS sometimes it might happen that a low-level node begins to stop updating and sending resource information to
the GIIS. Thus, the MDS search (in both centralized and hierarchical manner) could not be deterministic which means if the query answer is available
in the system, it is not guaranteed to see the answer in the query result. In other words, the system could not provide a reliable resource information to
the clients. Furthermore, as the size of the VO and the query rate increase, MDS has scalability limits due to the high network traffic near the root node.

G
an

gl
ia

[4
5] Hierarchical-Grid Proposed a distributed monitoring system for high-performance computing systems such as clusters and Grids. The resources are organized in a set of

federated clusters. In each cluster, a representative node reports the status of resources within the cluster to the federated monitoring system. It leverages
various technologies such as XML for resource description, External Data Representation (XDR) for data packing and transferring resource information,
and Round-Robin Database tool (RRDtool) for data structuring and storing information. It has tried to achieve a scalable solution by reducing network
overhead per node and increase the level of concurrency, however, like MDS-3, it still suffers from similar problems to the centralized systems such as
single point of failure and limited scalability.

R
C

aT
[4

6] Hybrid-Grid
(decentralized-tree)

According to the priorities of the resources characteristics, Resource Category Tree (RCaT) organizes and categorizes the resources in form of Georgy
Adelson-Velsky and Evgenii Landis (AVL)’s trees (i.e., self-balancing binary search trees) where each node in the tree is responsible for managing
the resources for the values of a specific attribute within a range, instead of a single attribute value. The tree is organized based on a self-balanced
structure from top to down where each level categorizes the values ranges for a particular attribute. Each tree root must have an assigned Primary
Attribute (PA) which is the most important attribute that can define the resource’s capability. The PA allocation might also be relevant to the application
resource requirements. For example, in the case of an intensive computing parallel application, the number of cores in the processor (static attribute)
or the current load of the processor (dynamic attribute) might be a potential PA. Each node in the tree only stores information about its connection
links to the child nodes, the parent node and also the range values which the node is responsible for them. Therefore, in RCaT, it is not necessary to
store large amounts of information in the higher nodes, achieving better scalability. However, the maintenance cost to create different dynamic trees
based on different attribute priorities is high, and it has a significant impact on the overall system efficiency. In comparison to the traditional trees and
hierarchical systems, the distribution of the query loads in the RCaT’s trees efficiently has been balanced and also the Average Search Length (ASL)
or the number of involved nodes to process a query has been decreased. In overall, we can say that RCaT has improved and enhanced the efficiency to
traverse queries in tree style structure, but it remains unsolved the number of critical issues related to scalability, heterogeneity, dynamicity and even
complex querying.

the centralized and hierarchical models (such as flexible query-
ing and reliability, concerning deterministic search and discov-
ery correctness) to a wider set of desired features and capabil-
ities in different aspects. A hybrid model can be achieved by
aggregating a central/hierarchical approach to the advantages
of the fully decentralized models (such as scalability, reliabil-
ity, self-organization, and efficiency). Decentralized-tree and
decentralized-mesh are the sample architectures which have
been used to deploy hybrid solutions like RCaT [46] for resource
discovery in Grid.

3.2.2. Peer to Peer Systems
Peer to Peer computing systems has emerged as an alterna-

tive paradigm to construct large-scale distributed systems. The
concept of P2P introduces many significant advantages in differ-
ent aspects of resource discovery including scalability (due to
collaborative resource sharing between peers), reliability (e.g.,
fault-tolerance) (due to the equality essence of peers), robustness
(due to self-organization against peer or system failures). For
resource discovery in P2P systems, it is more common for peers
to create network overlays on the top of physical network topolo-
gies. These overlays might provide a specific structure to store
and distribute resource information among peers, or the peers

can follow dynamical information maintenance and distribution
behaviors in an unstructured ad-hoc fashion. Table 2 elaborates
some recent examples of P2P resource discovery approaches
which are based on different overlay architectures. In continua-
tion of this section, we discuss the different approaches in P2P,
which we organize in structured, unstructured and hybrid.

Structured Systems: Most P2P resource discovery systems
depend on a structured architecture (e.g., ring, tree) where the
system can be understood by certain nodes of which the re-
sources information are fixed. Such systems are in general
faster in discovering resources than unstructured Resource Dis-
coverys (RDs), with a fixed and predictable time of resource
discovery. These approaches can be extremely useful for search-
ing resources using unique identification, but they fail when a
search using partial matching is required. Moreover, they create
additional overhead due to the management of the network ar-
chitecture (by updating the system structure in the case of node
failure or arrival).

There are two types of structured overlays: Distributed Hash
Table (DHT) based systems (such as Chord [60], CAN [61],
Pastry [62], Tapestry [63], P-Grid [64], and D-Grid [65]), and
non-DHT based solutions (like Mercury [66]). However, most
overlays of this type commonly make use of DHTs. A DHT
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Table 2: Examples of resource discovery in P2P-based systems (DS: Discovery System, FoCs: Flocks of Condors, MaT: MatchTree, CyG: CycloidGrid, SkipC:
SkipCluster).
DS Base Mechanism

M
aT

[4
8]

Hybrid P2P Overlay Proposes a scalable and fault tolerant system by creating a self-organized tree for query distribution and result aggregation with a specific asymptotic
latency increase pattern. It reduces the query latency and improves the system fault tolerance through redundant query topologies, sub-region queries,
and a set of progressive timeout policies. It supports complex queries and guarantees query completeness.

Tr
ip

od
[4

9]

Hybrid P2P Overlay Proposes an inherent fault-tolerant system based on hybrid overlay network for enhancing the scalability and search efficiency of resources in highly
dynamic large-scale heterogeneous environment. It is efficient to discover resources in proximity while it provides dynamicity in terms of dynamic
resource attributes. Additionally, the network overhead cost for overly construction and maintenance is very low.

C
yG

[5
0] P2P overlay Provides a two stages Quality of Service (QoS) and locality aware discovery algorithm for P2P based volunteer computing systems. In the first step, it

discovers a set of resources based on the required quality of service and the current load of the peers. In the next phase, it selects the closest resource
concerning communication delay (latency) between peers which is calculated using a network model based on queuing theory with consideration to
background network traffic.

PI
R

D
[5

1] DHT-based Focuses on multi-attribute querying and locality awareness. The system has been built based on a hierarchical P2P structure which uses a locality
sensitive hashing to generate indices for the peers and resources in a DHT overlay. It leads the system to be able to discover resources geographically
near to requesters. PIRD incorporates the Welch algorithm [52] to compress attribute information and then it weaves all attributes into a set of indices
using the hash function. Thus, the system can effectively define and perform a multi-attribute query by sending a single query message to the network.

Fo
C

s
[5

3]

Pastry (DHT-based) Combines the flocking of the Condor [54–56] pools with the Pastry mechanisms. It uses a self-organized Pastry overlay to index the distributed condor
pools.The system is static and doesn’t support dynamicity

Sk
ip

C
[5

7]

Hierarchical P2P
Overlay, Pastry (DHT-
based), SkipNet [58],
SkipGraph [59]

Designed to solve the problem of range querying and other kinds of proximity-aware related complex querying in classical DHTs. The system
can support both exact matching and multidimensional range querying without storing extra information in the peers. It has two tiers of hierarchical
architecture where in both tiers the peers are ordered and organized based on the sequence of their identifiers, considering the point that the semantically
related peers are stored near each other without hashing their resource keys. The pointers to the super peers in the higher tier are stored in a new data
structure called Triple Linked List (TLL) which are used to find the longest prefix for the query key in the remote clusters. In the lower tier, the routing
table of each peer contains pointers with exponentially incremental distance.

is a distributed data structure to efficiently perform distributed
storage and lookup of pairs (key, data) which provides a scalable,
fault tolerant and fast locating of data when a key is given. Here
we explain some of the well-known DHT based solutions in
detail.

Chord organizes peers and resources in an m-bit, ring based,
identifier space where m represents the total number of required
bits to specify each fixed-length keys/identifiers and the maxi-
mum number of 2m keys (representing resources or entities) can
be identified in the interval of [0, 2m − 1] (a range of non-negative
integers). We also must note that the value of m should be large
enough to avoid the collision in hashing. The Chord ring is the
basis for efficiently locating the peer that contains a particular
data item (i.e., resource description or resource information).
Both peers and resources are assigned m-bit identifiers and or-
dered based on their identifiers in a circle modulo 2m (called
Chord ring). The organization of peers is done by employing
SHA1 (Secure Hash Standard), a consistent hashing function,
which hashes the peer’s location (IP address) and the key (e.g.,
definition of a resource by a keyword, summary of the resource
information) respectively. Each key is assigned to the first peer
clockwise from the key in the Chord ring (called successor peer
of the key) whose identifier is equal to or pursues the identifier
of the key. Predecessor also is the peer that takes a position right
before the key in the ring. The distribution of the keys between
peers is load balanced by roughly allocating all the peers an
equal number of keys where each peer must maintain the corre-
spondent data (resource description) for several resource keys in
the form of (key, data) pairs.

The process of locating resources can be implemented on top
of Chord overlay by allocating a key with each data (resource
description) item and storing the key/data pairs at the correspon-
dent peers. The process is started by issuing a query to the

system. Afterward, the query hashed to a specific key identifier
by consistent hashing function, given a key, considering the
point that each peer knows about its successor, the queries can
be forwarded around the ring using the successor pointers until
the successor peer who is the owner of the key is encountered.
The successor peer of the key is responsible for storing the re-
quired resource information related to that key in the query. In
order to enhance the efficiency of the algorithm and limit the
number of explored peers to handle a query, each peer maintains
an m-entries small finger table (see Figure 7), which contains
the pointers to the potential successors for each range of keys.

A new peer can join the system by contacting a known peer
already included in the Chord ring. The joining request can be
responded by using the address of the potential successor and
predecessor. The new peer will ask these peers to be added to
the ring. Consequently, the number of certain keys which were
previously assigned to the successor peer will be moved to the
new peer. Similarly, when a peer voluntarily departs the system,
it transfers its keys to its successor peers in order to maintain the
resource availability of the system. Sometimes, it might happen
that a successor of a peer suddenly leaves the system, in such a
case each peer can substitute the ring with another successor in
the list of alternative successors which already have been stored
in each peer.

Sudden involuntary leave of peers can affect the resource avail-
ability because resources in the Chord system are not replicated,
crosswise peers. Thus, the system can designate an alternative
peer as the replacement for the departed peer. But there is no
guarantee to find an equivalent resource in the system instead
of the resource which already becomes unavailable due to its
peer’s departure. This will decrease the reliability of the Chord
system to a certain amount. Moreover, to address the problem of
frequent departures and joins of the peers in the system, Chord
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Figure 7: Examples of query processing in Chord.

uses a stabilization protocol which runs on each peer periodi-
cally to maintain the successors’ information and finger tables
updated. However, this is a costly process which affects the
system efficiency by occupying the bandwidth to handle the
maintenance loads. Chord distributes the resources among the
peers in an appropriate load balanced fashion while it reduces the
bandwidth cost of the query by avoiding flooding. The combina-
tion of these performance factors result that the system becomes
extremely scalable, additionally exploiting the capability of the
finger tables leads the Chord to facilitate faster and efficient
querying.

However, the Chord DHT has some disadvantages, for ex-
ample, due to using the hash values, it is only able to perform
exact querying, while it can not resolve a reliable complex query
(e.g., range, multidimensional and keyword search). Further-
more, the peers in Chord based resource discovery solutions
(like pSearch [67]) do not have full autonomy to control their
local resources. Thus, the Chord system could not be a purely
decentralized system. Research works in [68–75] discuss some
examples of improvements on Chord. Figure 7 demonstrates
examples of query processing using Chord.

Pastry [62] and Tapestry [76] are two distributed lookup sys-
tems which are very similar to Chord. The difference is that in
Chord, query forwarding is performed based on the numerical
differences between the source and destination address while in
Pastry and Tapestry the request forwarding is based on prefix and
suffix based routing approaches respectively. Moreover, despite
the similarity to the Chord, they provide support for locality-
aware discovery, which ensures that peers and distances in the
logical overlay network have a correlation with the physical
nodes and network distances in the underlying layer. Therefore,
passing a query along a logical connection to a close peer in
overly does not lead to a long distance query traveling in the
underlying network.

Pastry creates an m-bit (generally m=128) identifier space in
the range of [0, 2m − 1] by using a cryptographic hash function.
The IP address or the public key of each peer is hashed to a

unique node-id. Consequently, the peers and resources must
have their assigned m-bit node-ids and key identifiers respec-
tively and like other DHTs the keys should be distributed among
the peers in a load balanced manner. The peers are organized
and arranged in ascending order of node-ids in a ring. By having
a key for lookup, the system routes the query to the peer whose
node-id numerically is closest to the m-bit hash value of the key.
For implementing the lookup procedure and query forwarding
on the top of Pastry ring, each Pastry node is required to store
three type of data items, routing table, neighbors table and leaf
set nodes. The routing table of each peer stores the pointers to
the (usually long distance) peers in other prefix realms which
share different lengths of prefix (first i digits) with the nod-id of
the peer within the system.

In Pastry, ring consists of N nodes with definition of b bits
length (for each digit) and the identifier base=2b. The routing
table of each node has 2b − 1 columns and log2b (N) rows. The
entries at row i refer to peers that share the first i digits of the
prefix with the node-id while the maximum entries for each row
are base − 1. The i + 1th digit of the entry in cell (i, j) must be
equal to the column number of j. In other words the entry of each
cell (i, j) of the routing table must contains the topologically
closest node with prefix length i and digit(i + 1)= j. The leaf set
nodes contain the pointers to the l nodes which their node-ids
are numerically the closest nodes (l/2 nodes with a numerically
closest larger node-ids and l/2 with closest smaller node-ids).
The neighbors’ table stores the node-ids of the peers which
are topologically nearest (e.g., concerning latency or network
hops) to the current node. The neighboring information can
be achieved by caching of nearby candidates for routing table
during the construction of the routing table. The pastry algorithm
to find a key k in the system starts by submitting a query to node
p which is already included in the ring. Node p checks its local
leaf set nodes to find if a match for the key k is within the leaf
set if so, the query is resolved by forwarding the request to the
matched node which already owns the required resource of the
query k. Otherwise, referring to the information provided by
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Figure 8: Routing example in Pastry: Query with the key 322323 arrives at the node 322311 which has the closest node-id. The routing algorithm corrects one digit at
each step and then uses ”leaf-set” to locate node with closest node-id to target.

the routing table, Pastry forwards the query messages to a node
which has one more matching digit in the common prefix (see
Figure 8).

In the rare case when node p can not determine another node
in the routing table (a node which provides a longer length of
matching prefix), the query is forwarded to any node that is
closer to the key than the current node-id within the merged set
of the routing table. The merged set includes neighborhood set
and the leaf set. Research works in [77–82] are some examples
of the improvement works based on Pastry.

Figure 9: Example of partitioning in 2-Dimensional CAN. Each node is assigned
a unique zone in the M-Dimensional coordinate space. A new node is usually
joined by identifying and splitting a zone in the coordinate space that can be
split.

The scalable P2P models such as Chord, Pastry, Tapestry and
CAN (see Figs 9 and 10), have two general disadvantages. First,
they do not provide fully local control over data in each peer
which reduce the overall decentralization, autonomy, and flex-
ibility of the system. Secondly, they do not guarantee that the
routing paths will remain permanently within a constant admin-
istrative domain, which reduces the reliability and increases the
maintenance cost of the system. There is some research works
in P2P such as SkipNet, SkipGraph, P-Ring [83, 84] and Online
Balancing [85] which concentrate on solving above issues.

Overall, we can conclude that DHT based systems build effi-
cient query execution structures that are well suited to deal with
the scalability and efficiency issues for discovering resources in
LDCE. However, they come with some shortcomings in different
aspects such as semantic querying, dynamicity, heterogeneity
end topology mismatching. Several research works are focusing
on improving the capabilities of the DHTs along the line of
the problems mentioned above. In the following, we explain
the drawbacks and some of the potential solutions found in the
literature.

Figure 10: Sample routing path from S to D in a 2-Dimensional CAN. Using the
greedy routing strategy, the query message, in each intermediate node, is routed
to a neighboring node that is positioned closer to the desired location.

DHTs do not support semantic querying and keyword search.
The lack of semantically-rich resource descriptions and capa-
bility to perform flexible/complex querying in DHT limited the
discovery efficiency, especially in the environment where the
resource requesters are not able to precisely clarify their resource
requirements and conditions. For example, a requester might be
interested in locating a certain number of vector processors (e.g.,
Single Instruction, Multiple Data (SIMD) processing cores) in
an attribute-based DHT system. Assuming that the resources
are described based on a constant number of attribute values,
the query might not be successful even if the qualified resources
are present in the system. The reason is that simple exact query
results require the query itself to be described precisely by the
resource requester, and the resource requester does not want to
limit its potential resource options, while the requester doesn’t
know about the available resources in the network. Semantic-
based querying is one way to overcome this problem by or-
ganizing peers/clusters based on their contents (i.e., based on
the conceptual similarity of the resources) to enhance content
search.

ERGOT [86] presents an approach to overcome the problem of
semantic querying in DHTs by leveraging the DHT mechanisms
to build a Semantic Overlay Network (SON) [87]. DHTs are
scalable and fault tolerant. They also guarantee efficient lookup
at an exactly predictable cost while they are semantic-free. On
the other hand, SONs are flexible enough to perform semantic
driven querying, enabling them to go beyond exact matching
(but are less scalable than DHTs). It has to be taken into account
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that the performance of SONs highly depends on the way that
semantic links are created, and the communication cost to create
the semantic links. ERGOT enables semantic-based resource
discovery in distributed infrastructures such as Clouds and Grids.
It employs a sort of semantic annotations (required to define the
notion of similarity) for enhancing and enriching the description
of resources/services and queries by providing two strategies:

- First, peers can construct the semantic links during the nor-
mal interaction of peers in DHT by recognizing the peers with
similar content. Thus, the semantic links (links between peers
with similar content in SON) can be created without any extra
cost. In other words, resource providers advertise their resources
in the DHT according to their annotations which result in build-
ing SON among the resource providers which provides similar
resources.

- Second, the system can use the advantage of DHTs to per-
form exact matching while it can resolve semantic queries based
on resource match-making by measuring the similarity, between
query’s resource requests and resource descriptions.

Similarly, DHT Information Service (DIS) [88] proposes a
scalable DHT and ontology-based information service for Grids
to speed-up querying and enhance query precision and integral-
ity, by aggregating DHTs and semantic-based query techniques.
DIS is concerned in the dynamic attitudes of the resources (e.g.,
frequent joining and leaving of resources) in virtual organiza-
tions since it requires robust self-organization capability of the
system to maintain the system structure. Additionally, in the
case of creating key space for the DHTs, a large-scale key space
might produce an unbalanced workload distribution among the
nodes in the DHT, while a small key space reduces overall
system efficiency. Thus, it is desired and complicated to ar-
range a moderated key space for the DHT ring where the size
of identifier space is optimum. DIS builds a moderated DHT
ring considering the VO mode in terms of stability of resources.
The stable VOs in the system directly participate in organizing
resources in the DHT ring. On the other hand, for the purpose of
keeping the size of identifier space moderated, only stable VOs
can join the ring through a new DHT node and the unstable VO
join DIS by becoming a sub-domain of the other VOs. By using
the above strategy and ontology-based query techniques, DIS
has extended the DHT capabilities to support semantic querying.

Another drawback of DHTs is the lack of support for dynamic
attributes. For example, the dynamic changing resource infor-
mation of the idle CPU cycles is not possible to be hashed in a
DHT overlay, Only the information about the static attributes
can be stored in DHTs. Furthermore, DHTs do not support
heterogeneity of resources in terms of the number and types of
resource capabilities and functionalities, for example, processing
resources provide different types of attributes than communica-
tion and memory resources, and even the types of attributes for
Graphics Processing Unit (GPU) resources might be different
from CPU resources. In fact, nodes types homogeneity is an
implicit assumption in most of DHTs such as Chord, CAN, Pas-
try and Tapestry where they expect all the nodes have the same
behavior and capabilities. It results in limiting the efficiency
and applicability of resource discovery in LDCE saturated by
heterogeneous resources.

Topology mismatching or the lack of support for proximity-
aware querying is another common problem in DHTs. One of
the most important desired features of resource discovery, espe-
cially in large-scale computing environments, is the ability of
the querying system to discover resources in close vicinity. Pure
P2P based systems, like DHT-enabled approaches, generally
provide limited (e.g., Pastry) or zero (e.g., Chord) support for
such proximity-aware querying. The neighboring nodes in DHT
overlay are not necessarily close to each other in the physical
topology. The DHT overlay structure destroys data locality,
which increases the discovery overhead especially to process
a particular type of queries such as resource graph query and
range query. Clustering solutions (e.g., super peers) have been
proposed to resolve the aforementioned DHT shortcoming (see
Section 3.4).

Unstructured Systems: In unstructured discovery, the dis-
tribution of the resource information among the nodes is not
followed by a predefined or controlled mechanism. An unstruc-
tured system can support partial matching and also complex
querying. The use of a loose architecture makes the system
resistant to node failure and Denial of Service (DoS) attacks.
Furthermore, the convenient system adaptation to the frequent
node joins and disjoins provides dynamicity for querying in
such environment. However, unstructured discovery has a low
rate of resource discovery in comparison to structured systems.
Nodes in these systems are free to behave as they want and they
carry a part of the network functionality. Thus, their failure or
misbehavior can be costly. Besides, an unstructured approach
has numerous challenges especially in terms of fault tolerance
under churn, load balancing, and flash crowds. The unstructured
discovery in P2P possess the following distinct properties:

1. Decentralization: implies a system architecture without any
centralized server or control point. It avoids single or multi
points of failures in P2P environment.

2. Self-organization: contains the capability of the system to
be dynamically reconfigurable, which facilitates forming a
dynamic network overlay while the system keeps changing
over the time.

3. Autonomy: the peers in the system are independent entities,
which have autonomy to make a decision based on their
preferences and priorities, to establish or cut a connection
link to other peers in the overlay network.

4. Anonymity: the peers in the system do not have a global
knowledge about the whole system. In other words, each
peer only knows about itself, and no one knows about the
others (even neighbors).

5. Unstructured: there is no predefined structure or fixed
points to store and access the resource information.

Accordingly, depending on the search methods (see Section
4.3), unstructured discovery solutions (e.g., Gnutella [89], JXTA
[90], Freenet [89], Morpheus [91, 92] and Routing Indices (RI)
[93]) can be categorized in two groups: deterministic and non-
deterministic discovery.
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Gnutella [94, 95] is a purely decentralized resource discovery
based on a pervasive exchange of messages (aggressive flooding)
which has initially been designed for file sharing. However, it
has been extended to cover for the domain of resource sharing
in the computing environments. Gnutella consists of a set of
Gnutella Nodes (GN) which are called servants. They play both
roles of client and server entities. Each servant is responsible
for processing the received queries, check for matches against
their local set of resource information and respond with related
results. The search mechanism relies on broadcasting and back-
propagation communication. It starts by sending a “Query”
message contains a criteria string and a randomly generated mes-
sage identifier, flagged with NHP (number of passed hops) and
Time To Live (TTL) fields from a requester to all of the servants
in its vicinity. Upon receiving a “Query” message in the target
node, it decreases the TTL value in the header descriptor. If the
query conditions are not satisfied with the current resources and
the TTL after decrement still is not zero, the servant broadcast
the query message along the (open TCP) connection links to its
neighboring servants, except the arrival link of the query. Ad-
ditionally, each GN uses a caching mechanism to maintain the
track of the recent queries for the purpose of back-propagation of
the result messages (or “Hit” messages) to the original requester,
and also avoid to duplicate forwarding of the same queries.

GNs must always keep information about their neighbors
updated. For this purpose, each node periodically broadcasts
“Ping” messages to its neighbors and the receivers answer with
“Pong” messages to confirm their presence. GN also supports
“Push” message which is a request that can be sent to the re-
source providers in order to ask them to contact the resource
requester. Gnutella provides efficient properties especially in
dealing with dynamicity and heterogeneity of resources. How-
ever, it has many drawbacks: the search is non-deterministic,
the TTL technique implies a better scalability but reduces the
number of explored hosts for a query. Especially for the rare
resources, the limited query radius leads to the small number
of hits (successful discovery). Increasing the TTL on the spot a
query is not resolved is a technique to solve this problem, but
it results in a logarithmically increase of the network traffic,
which could not be a scalable approach in dense communica-
tion systems. The other shortcoming is that Gnutella does not
support exact matching. The search is based on keyword query-
ing, which is not accurate. The protocol is also not efficient
concerning resource consumption and due to its flooding na-
ture (broadcasting) as it invokes too many nodes to handle a
query. There are several works in the literature [96, 97] that
proposed alternative methods and techniques to improve the
Gnutella drawbacks.

Routing Indices (RI) [93] uses distributed indices in unstruc-
tured P2P networks. The advantage of this mechanism relies
on the fact that queries are disseminated and forwarded only
among the places of the network where resources existed, thus
avoiding to flood query requests to the nodes which are not
useful. The main drawback of this solution is that this index-
ing system comes from the presence of cycles in the network
graph. A recent work [98] of this type extends RI and proposes
a technique to perform resource discovery in Grids based on

P2P with the capability to perform multi-attribute queries and
range queries for numerical attributes. It uses an information
summarization technique presented in [99] and creates different
types of summaries and accordingly presents a metric (called
goodness function) needed by RIs to guide the query process. It
still suffers from RI drawbacks as well as the lack of support for
complex querying. A similar proposal [100] presents a task/job-
level resource discovery with limited flexibility of querying to
handle multi-core machines in Desktop Grids. This technique
handles resource availability based on a few set of numerical
parameters, such as CPU speed, number of cores, and memory
availability. We must note that most of the proposed unstruc-
tured discovery solutions in the literature are initially designed
for file sharing applications which are out of the scope of our
interest in this paper.

Hybrid solutions try to combine and strengthen the benefits
offered by the traditional structured and unstructured resource
discovery systems. MatchTree [48] and Tripod [49] are exam-
ples of hybrid solutions (see Table 2).

Table 3 provides a comparison of major types of resource
discovery for both Grid and P2P environments in most aspects.
We further discuss the details of the performance factors used
for this comparison in Section 5.

3.2.3. P2P-Grid Systems
As we discussed in Section 3.2.2, P2P systems contain au-

tonomous entities that can accomplish actions automatically and
without any manual control. Furthermore, they can deal with
scalability issues while providing a significant efficiency con-
cerning the dynamicity of resources. These features make P2P
strategies as powerful solutions for implementing decentralized
discovery in Grid environments.

A P2P Grid consists of a group of Grid peers which share their
resources in a purely decentralized manner. A Grid peer contains
a set of local nodes where each node (a computing machine) can
manage several Grid resources. All the nodes potentially can
play the role of server or client. Since the importance of all the
nodes is equal, the system does not suffer from a single point
failure, and it could be more scalable in comparison to other
counterparts. The general search mechanism for a query is to
explore the local Grid peer in advance. The unsuccessful query,
in the next step, will be forwarded to the closest remote Grid
peer in the vicinity using various strategies and techniques (such
as Random Walk or anycasting).

Importing and leveraging the alternative concepts like P2P
can improve the performance of the resource discovery in
Grid [101, 102]. The P2P-based approaches offer a signifi-
cant advantage over their hierarchical (Grid) counterparts by
way of resistance to failure and traffic congestion. In particular,
structured P2P systems based on DHTs are very popular for
file-sharing applications, but not for sharing resource informa-
tion. Moreover, typical structured P2P-based systems are very
sensitive to churning leading to resource unavailability [103].
These systems achieve good performances and scalability char-
acteristics, but they are limited to only support exact matching.
Moreover, their hashing functionalities perform well with static
attributes, but they need to be enhanced for handling dynamic



Table 3: Summary of comparison of the major types of resource discovery for different performance factors (PFs: Performance Factors, RB: Reliability, FT:
Fault-Tolerance, LB: Load-Balance, AN: Autonomy, CQ: Complex Querying).

PF Centralized-Grid Hierarchical-Grids Structured-P2P Unstructured-P2P

Sc
al

ab
ili

ty Not scalable especially for the large-
scale Grid because of the single point of
failure bottlenecks

Provides better scalability than central-
ized system, but still suffers from over-
loaded hot spots; the roots of hierarchy
becomes easily single point of failure

Limitations due to the significant amount
of overhead network traffic

Generally scalable

E
ffi

ci
en

cy

Provides efficiency in terms of fast dis-
covery and precise discovery results

Similar to centralized Fast lookup speed. Guarantees to per-
form a query in a bounded number of
hops. It assumes that the availability of
the resources in the network is guaran-
teed. Thus, it doesn’t provide a good ef-
ficiency to work in a dynamically chang-
ing environment. The dynamic changes
of resource information must be propa-
gated over the network which reduces
system efficiency by creating a consider-
able amount of network overhead.

Low lookup speed. Costly membership
management. Slow propagation of in-
formation in the case of dynamic values.
Does not assume any guarantees about
the peers or resource availability. There-
fore it does not put any constraints on the
topological placement of resource infor-
mation.

R
B Highly reliable in terms of result accu-

racy. Not reliable in terms of single point
of failures

Reliable in terms of result accuracy. Not
reliable in terms of single point of fail-
ures.

Reliable in terms of exact matching. Not
reliable in terms of interval search

There is no guarantee to perform success-
ful querying. Reliable in terms of dynam-
ically changing environments

D
yn

am
ic

ity

Supported in terms of dynamic attribute.
Not supported in terms of indexing mech-
anisms and periodical updating of the re-
source information

Supported in terms of dynamic attributes.
Better support for indexing mechanisms
and periodical updating.

Supported concerning dynamic topol-
ogy changes. Not supported concern-
ing dynamic changes of attribute val-
ues where the system has issues to store
rapidly changing resource information.
The overlay networks are appropriate
to maintain static resource information
while for dynamic information the over-
lay must be reorganized which is costly.

Highly supported

FT

Not supported Not supported Supported Supported

L
B Not supported Not supported Supported Supported

A
N Not supported Not supported Supported Highly supported

C
Q Provides all kind of flexible querying due

to the advantage of using central data
structure/database

Limited support Do not support or have a limited sup-
port for interval search (such as partial
querying and range querying), semantic
search, multidimensional querying and
resource graph discovery

Better support for complex querying in
comparison to structured P2P and less
flexibility than centralized systems

objects appropriately. SWORD [104] is a P2P-based approach
which supports multi- dimensional resource attributes and range-
based querying, and improves the existing systems by resorting
to multiple DHTs. ERGOT [86], DIS [88], RI [93], [98], and
[100] are other examples of P2P-based Grid discovery which
have already been discussed in Section 3.2.2. These Grid ap-
proaches, in fact, have tried to improve original P2P mechanisms
in order to resolve some inherent shortcomings of DHTs and
P2P strategies, as discussed in the previous section.

We can conclude that the combination of P2P and Grid would
be desirable, particularly to build scalable and fault tolerant
resource discovery approaches for large-scale distributed sys-
tems (e.g., [17, 105–109]). Further examples can be found in
[110] which is a review of the most promising Grid systems that
employ P2P strategies to facilitate resource discovery.

3.2.4. Cluster, HTC and HPC
Computing systems such as Cluster, High Throughput Com-

puting (HTC), High Performance Computing (HPC), and Cloud
are generally based on a centralized/hierarchical architecture,
leading to the use of centralized resource discovery to respond
to user requests. For example, when a request arrives at a HPC
cluster-head (or a Cloud service provider in the front-end), the
resources required can be discovered (allocated or provisioned)
by searching in a specified pool of resources (or in a back-end
datacenter). The number and the type of resources are known

beforehand (this may not be necessarily true in Clouds). For
such environments, resource discovery based on a centralized
architecture could become an easy task. And, in fact, instead of
discovery problem, the resource scheduling issues are dominant.
In this and the next section, we aim to discuss resource discovery
for HPC and Cloud. However, due to the nature of these types
of environments, we may also discuss relevant topics such as
resource scheduling.

A Computing Cluster can be defined as the composition of
several computing nodes (workstations), multiple storage de-
vices and interconnections, which together appear to the users as
a single system that is highly available and reliable to run user
tasks. HPC, HTC and Many Task Computing (MTC) are some
types of computing clusters.

HTC environments provide a significant amount of processing
capabilities to run user jobs (i.e., independent loosely-coupled
tasks), over long periods of time, through the dynamic exploita-
tion of all the existing available computing resources in the
system. In fact, HTC tasks are sequential and independent. They
can be individually scheduled on a broad range of heterogeneous
computing resources, geographically distributed across multiple
administrative domains. Various Grid Computing techniques
can be used to build HTC systems [111]. HPC creates supercom-
puters to run tightly coupled parallel tasks on large amounts of
computing capacity over short periods of time. HPC focuses on
the fast execution of tasks (generally dependent tasks). There-
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fore the interconnects of HPC clusters must provide low latency
for communication between processes running on different com-
puting resources. MTC is the bridge between HTC and HPC
with an emphasis on employing many computing resources over
short periods of time, for executing many computational tasks
that could be either dependent or independent.

By using traditional cluster management systems, it might
be possible that each cluster nodes knows about the static at-
tributes of the resources in other nodes without relying on a
complete approach for resource discovery. For example, ignor-
ing the dynamicity issues, a centralized cluster can statically
be configured to maintain all the information about the cluster
resources on a central server and the clients just simply submit
the queries to the server. In some cases, the static information
is not necessary for the task allocation in the cluster. In other
situations, this static information might not be enough since
the demand might be raised for the dynamic information about
resources. The dynamic information can be used to determine
whether the required resources are currently free or are occu-
pied. However, state information (i.e., the information about
the dynamic resource attributes) such as processor availability,
memory usage or available bandwidth, which are rapidly and
frequently changing, may not be accessible without leveraging
an efficient resource discovery mechanism.

Resources may have multiple single attributes which can be
either dynamic or static. Thus, depending on the computing envi-
ronment and the purpose of resource discovery, different discov-
ery strategies can be implemented, ranging from single-attribute
to multi-dimensional discovery systems. CPU availability (CPU
load or CPU utilization) and memory utilization (memory usage)
are two important dynamic attributes which have the key roles
to structure any computational resource discovery mechanisms.
In fact, task allocation is not feasible if the qualified discovered
resources would be unavailable in terms of CPU and memory
load. In general, the resource discovery problem in computing
clusters aims to find the available computing resources in the
system for job scheduling and task allocations. CPU discovery
and memory discovery are the examples of single-attribute dis-
covery (i.e., state discovery) where CPU utilization and memory
usage respectively is the only resource information of interest.

In cluster computing, we can categorize resource discovery
approaches (in the case of state information) in three groups:
Active, Passive and Predictive. In the Active approach (e.g.,
centralized batch systems and decentralized state discovery algo-
rithms), the requesters use an intrusive method (within a client-
server like communication model) to know about the state of
the other resources. Additionally, the Active approach does not
support dynamic load balancing. In the Predictive approach, the
requesters use the state of the resources in the previous cycle
(which has already been obtained using an Active method) to
predict the state of the resources in the upcoming cycle and thus
reduces the overhead of the Active method. The Active approach
generates a substantial network overhead due to the periodical
resource state updates with direct communication between the
resource manager and the compute nodes. The Passive approach
attempts to get the information about the state of the resources
by analyzing the behavior of the existing network traffic in the

cluster. Since the Passive approach is not an intrusive mech-
anism, it doesn’t generate extra overhead, which results in a
decrease of the communication complexity (the number of mes-
sages required to solve a discovery problem), but provides less
accurate information.

In cluster computing, another alternative for Active discovery
is using decentralized algorithms such as ALG-Flooding [112],
Swamping [112], Random Pointer Jump [112] and Name-
Dropper [112]. These approaches can gather the state infor-
mation of the resources on different nodes around the network.
The state information denotes that if a particular resource is
available (concerning CPU or memory) to allocate a specific
task. We discuss these algorithms in more details in Section 4.3.

The Batch System (or Asymmetric Computational Clus-
ters) [113–116] is a conventional type of cluster management
systems which has been used to compose most of the current
large-scale computational clusters. It contains three types of
essential components: Resource Manager (providing resource
capabilities and status), Queue/Job Manager (including creation,
queuing, controlling and monitoring of the user’s jobs) and
Scheduler (containing resource mapping and allocation) (see
Figure 11).

The queue manager lets users submit their jobs to the queues,
and provides possibilities for users to monitor and control the
state of their jobs, which can be running on the computing nodes
or waiting in the queues. For each task, the scheduler selects
the target computing nodes and then assigns the jobs to the re-
sources on the computing nodes according to the scheduling
policy. In the next step, the resource manager monitors the
state of the resources on the computing nodes as well as the
state of the job executions in the resources. The computing
nodes periodically update the resource manager regarding the
state (e.g., available, occupied) of their resources or the resource
manager can be responsible for getting this information through
periodical querying of the computing nodes. Examples of batch
systems include Condor [54–56], Berkeley Open Infrastructure
for Network Computing (BOINC) [117], Globus [118], Fast
and Light-Weight Task Execution Framework (FALKON) [119],
Oracle Grid Engine (previously known as Sun Grid Engine or
SGE), Tera-scale Open-source Resource and Queue Manage-
ment (TORQUE) [120], Dodo [121, 122], Slurm [123], and PBS
[124].

Condor [54–56] is a centralized batch system that is designed
specially for HTC clusters. Like other batch systems, it has three
main components: User Agents, Resource Agents (or Resource
Owner Agents) and Matchmakers (see Figure 12). User requests
are represented within User Agents, so the User Agents submit
their resource requests to the Matchmakers which includes all the
constraints that define the characteristics of the desired resources.
For example, a User Agent (requester) may need only to find the
resources running a particular operating system. On the other
hand, resources are represented within Resource Agents, which
contain the resource owners policies. For example, a resource
owner may only be willing to serve the requests made by a
particular group of users. The Resource Agents advertise their
resources through resource offer messages to the Matchmaker
where it attempts to find the matches between resource requests
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Figure 11: Computing strategy in Batch Systems.

and resource offers in a way that all the constraints of the three
parties (User Agent, Resource Agent, and Matchmaker) are
satisfied.

Figure 12: Condor matchmaking.

The Matchmaker [54] also implements a collection of system-
wide policies including logic to map the resource requests to
the resource information through imposing its constraints in the
matchmaking process. For example, the Matchmaker generates
the priority ranking for the requests. Thus the requests with
higher priorities have greater opportunities to find the matches.
When a match is found, the Matchmaker notifies both User and
Resource Agents, which consequently will execute a claiming
protocol to start the task allocation process. The Matchmaker is
also able to measure how well a resource can satisfy a request
by running a preference function. The resource information
is expressed in ClassAd format, which is used by the Match-
maker to facilitate the matchmaking and resource preference
measurement. Additionally, Condor provides features to support
resource scavenging: a capability to locate idle resources using
a daemon providing summarized monitoring information such
as average load, total idle time, as well as some other elements
of basic information.

BOINC [117] is a centralized loosely coupled HTC platform
(i.e., desktop Grid like Entropia [125]) that provides resource
sharing facilities for large number of volunteers to create, op-
erate and monitor the public-resource computing projects such
as *@home (e.g., SETI@home [126], Predictor@home, Fold-
ing@home [127] and Climate@home). BOINC encourages the
creation of many projects while it encourages volunteers (the
computer owners around the world) to participate in one or more
projects. Resource owners can enforce their policies to specify
how their resources are allocated to each project. Each BOINC

project is identified by a single master URL which serves as
a directory of scheduling servers, while resource owners can
register their resources and participate in the projects. BOINC,
similar to other batch systems like Condor, relies on knowing
state information of all computational resources, which results
in a large amount of information that limits system scalability.
In fact, BOINC suffers from a scalability problem since it uses a
global scheduling mechanism.

TORQUE [120] is a Workload and Resource Management
System (WRMS), which consists of two components: one for
job execution and resource monitoring, and other (called Moab)
for queue management and scheduling. These two components
together provide all the necessary functionalities and meet the
requirements of a batch system. TORQUE uses a one-to-one
mapping scheme to allocate jobs to each compute node available.
This mechanism is not efficient because each compute node can
perhaps execute more jobs. TORQUE is also not able to dynam-
ically balance jobs among resources. FALKON [119] is derived
from TORQUE aiming to enhance its efficiency, enabling to
assign multiple tasks to a single compute node. However, like
TORQUE, it doesn’t support dynamic load balancing. FALKON
integrates multi-level scheduling and streamlined dispatchers
to enhance the system performance by decreasing the task exe-
cution time. It attempts to achieve higher scale through renun-
ciation of some functionalities such as priorities and multiple
queues (which already have been provided by Condor). How-
ever, since the FALKON dispatcher is centralized, its scalability
is limited.

Dodo [121, 122] is a batch system for harvesting idle re-
sources (in terms of memory) in off-the-shelf clusters of work-
stations which include the components such as, central manager,
scheduler, resource monitor and the idle memory daemons. In
this system, resources periodically inform the central manager
regarding their state (free or busy). The system only schedules
the jobs to the resources on the idle compute nodes. Therefore it
can not provide support for dynamic load balancing.

Simple Linux Utility for Resource Management (SLURM)
[123] is an open source batch system which is widely used by
many supercomputers and computer clusters around the world.
It provides a simple, fault tolerant, and highly scalable resource
management system for large-scale Linux clusters including
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thousands of nodes. It is also flexible to be ported to clusters
with different size and architecture. However, SLURM does
not provide a comprehensive cluster administration/monitoring
capability. SLURM is not a sophisticated batch system since it
only provides high-performance parallel job management while
leaves most of scheduling decisions to an external entity. In
fact, it does not even perform functions such as general purpose
event logging or historical state recording for its compute nodes.
The SLURM’s default scheduler implements First-In First-Out
(FIFO).

Portable Batch System (PBS) [124] is a commercial batch
system, providing a flexible batch queuing and workload man-
agement solution for HPC systems and Linux clusters. It allows
sophisticated scheduling by extracting various scheduling poli-
cies, customized by site administrators. PBS spawns daemons
on each machine and provides additional controls for initiat-
ing/scheduling processing jobs on host machines or routing jobs
between different hosts. While PBS provides a portable and flexi-
ble resource management approach, it has significant drawbacks.
PBS is single threaded, resulting in a very poor performance on
large scale clusters. PBS also suffers from a weak mechanism
for starting and cleaning up parallel jobs. LSF [128], Load Lev-
eler [129], and CCS [130] are further examples of schedulers
and resource managers for HPC systems.

3.2.5. Cloud Computing Environments
Cloud computing [1, 131, 132] provides infrastructure (Infras-

tructure as a Service or IaaS), platform (Platform as a Service or
PaaS) and software (Software as a Service or SaaS) as services
to the end users. It helps the users to create and manage their
customized hardware and software, while it reduces the cost and
the complexity of maintaining the required hardware/software
for different user’s applications. Grid and Cloud computing
attempt to highly utilize and manage distributed resources to
attend large (computational) jobs efficiently. But, Grids and
Clouds are fundamentally different in several aspects. Clouds
have built-in administrative boundaries [1, 133] which affects its
capabilities to be inter-operable, while Grid do not reflect such
limitation in its operation[134]. Grids nodes have autonomy to
self-manage their characteristics and behavior.

Cloud computing uses negotiated Service Level Agreements
(SLA) to dynamically scale the user instances in the hardware
infrastructure, software platform, and software application ac-
cording to the potential resources in the Cloud. However, the
capability of a single Cloud is limited, and it might happen that
a single Cloud is not able to uniformly maintain the quality of
services for all users requests. One of the ideas to overcome this
problem is the convergence of the Cloud with Grid along the line
of the inter-Clouds federation. It must be taken into account that
one of the most important integral element in this convergence
procedure is the problem of resource sharing, which contains the
issues related to information dissemination, resource matching,
and discovery.

The resource scheduler in the (computing) Cloud receives
the user request, which includes a set of required hardware to
build a customized computing system. Afterward, the scheduler
starts to look up a matched set of physical or virtual resources.

If the demanded resources are not available in the system, the
Cloud service provider (system manager) has to create virtual
resources (resource/service provisioning) which are precisely
matched to the request. So despite the Grids super-schedulers
(Grids controllers), Clouds schedulers are responsible for both
resource discovery and resource provisioning. In Grids, each
Grid site may have a super-scheduler (or global/meta scheduler)
which is in charge of allocating jobs received from clients to the
global/local resources found by resource discovery.

Clouds are based on a Service Oriented Architecture (SOA)
where each service is accessible through a broker. The clients
submit their requests, containing the required QoS levels for
the desired services to the brokers. Consequently, the bro-
kers proceed to find and allocate the best matching service
provider for the requested services with a certain level of QoS.
There are a significant number of commercial brokers such as
Cloudswitch [135], Deltacloud [136–138], Eucalyptus [139]
and Elastra [140, 141] which already are used in different Cloud
systems. However, there is still no standardized method to map
Cloud services to the clients’ requests, based on QoS level.

Considering the administrative boundaries of the Clouds and
the fact that Clouds allow resources that can be elastically di-
vided and reassembled to meet the end users requirements, the
concept of resource discovery in Cloud differs from Grid. Here
it has to support scheduling and resource management func-
tions such as resource provisioning, resource brokering, resource
mapping, resource allocation, resource modeling, and resource
adaptation. Resource discovery, hence, is especially emphasized
when we move toward inter-Clouds approaches or Self Orga-
nized Clouds (SOCs). Each single Cloud provider or individual
host are required to autonomously locate and discover a set of
qualified volunteer computing resources in the network for its
job’s execution via different types of querying strategies. Since
i) we want to focus on resource discovery, and we are not going
to discuss in depth other relevant resource management aspects
(like resource provisioning) in Cloud computing (there is a com-
prehensive survey to address the resource management issues
for Clouds in [142]); ii) due to the point that most of resource
discovery solutions for Grid and P2P are also applicable to be
used in Clouds; we focus in this paper on the Cloud architec-
tures and discovery solutions which have specially designed for
multi-Clouds environments such as Federated Clouds, Hybrid
Clouds, and Self-organized Clouds.

The increasing number of Cloud services along with the mas-
sive amount of global users and inherently limited scalability
of the current single provider Clouds became the reason for the
development of multi/many providers Clouds. In such an envi-
ronment, called a federated Cloud, resource discovery becomes
a critical issue to address the federated placements, considering
the point that all Clouds are not equal in terms of capabilities,
performance, QoS, availability warranties, and cost. The feder-
ated placements refer to the process of clarification of the most
appropriate cluster to use for a particular application workload.
Along with this line, there are a number of resource-centric
IaaS providers such as Eucalyptus, OpenNebula [143] and Nim-
bus [143] that provide the clusters of virtual machine hosts as
IaaS resources. They offer the list of their resources types con-
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taining the prices and the detail of capabilities for each particular
resource type.

RESERVOIR [144, 145] introduced the notion of federated
Cloud. The Federated Cloud contains several single Cloud
providers joined by a mutual corporation agreement which
makes inter-Cloud computing and cross-Cloud migration fea-
sible in a cost-efficient manner. Providers that have excess
capacity can share their additional (available) infrastructure re-
sources with the federation members that need those resources
to overcome the problems such as resource limitation and over-
provisioning. RESERVOIR is an open federated Cloud comput-
ing model, architecture, and functionality which aims to deal
with scalability, complexity, and interoperability in multiple
Clouds environments.

In the RESERVOIR model, two or more Cloud providers
join the system to create a federation Clouds. This way, vari-
ous Cloud services/resources can dynamically be managed and
controlled together. Logical services/resources are represented
and encapsulated in a Virtual Execution Environment (VEE).
VEEs are hosted on top of physical resources and virtual ap-
plication networks which are represented as Virtual Execution
Environment Hosts (VEEHs) managed by a Virtual Execution
Environment Management System (VEEM). The VEEM is re-
sponsible for performing the management, deployment, and
migration of VEEs on top of VEEHs through the utilization
of OpenNebula. Moreover, the service manager component
is responsible for instantiating services and manage the SLA.
RESERVOIR provides facilities to describe and specify the appli-
cation configuration, which results in defining a service by a set
of information such as the specification of the virtual machine,
application configurations, and deployment settings. RESER-
VOIR attempts to maximize system flexibility to address the
different requirements and policies from various infrastructure
resource providers, by supporting dynamically-pluggable poli-
cies to measure and calculate the placement. Different policies
define different utility functions which have to be optimized. For
example, a load balancing policy aims to distribute the Virtual
Machines (VMs) equally between physical resources, while an
energy saving policy tries to minimize the number of physical
resources for VM allocations; thus, to reduce energy consump-
tion, the unused machines can be turned off. The RESERVOIR
Cloud model enable the individual Cloud providers to have a
focused view of resources, while fully preserving the individual
autonomy of the providers in making technological, policy and
management decisions, by leveraging and combining the ad-
vantages of virtualization and embed autonomous control. This
helps the resource/service providers to completely describe and
define their resources that help to implement efficient and ac-
curate resource discovery approaches along the line of Cloud
computing requirements.

Another example of resource discovery, for multi/many
providers Clouds, is presented in Wright et al., [146]. It deploys
a two-phase constraints-based resource discovery solution which
uses a software abstraction layer to discover the most suitable in-
frastructure resources in a multi-provider Cloud environment for
a given application request. In the first step, the discovery system
identifies a set of potential infrastructure resource candidates

who can satisfy the application requirements concerning quality
of service. And in the second phase, an appropriate heuristic
method depending on the application preferences (for example,
some application may prefer to use a cost-based heuristic while
others can prefer the performance-based heuristics) is used to
select the best matching candidate among the initial set of discov-
ered resources. The proposed model shows a dynamic flexibility
to choose the resources based on the application requirements
and preferences.

3.3. Ontology and Resource Description
In a computing environment, there are several different enti-

ties (e.g., resource providers, resource requesters and directory
agents) that are seeking a common purpose of resource sharing.
For this purpose, at least they should have a global understanding
of resources, which requires a shared definition of resources in
terms of ontology (i.e., description/definition of resources). A re-
source description model facilitates collaboration among system
entities and reaching an agreement to perform resource shar-
ing through discovering, mapping, allocation, and invocation of
resources.

Resource discovery and mapping can be simply defined as
the process of finding computing resources and efficiently map-
ping computing applications (or application segments) to the
discovered resources. For each application query, the discov-
ered (selected) resources are the best matches according to the
application requirements while the resources in the system must
be utilized efficiently. For doing this, it is required to abstract
the complexities of the system components such as computing
applications (application description) and hardware computing
resources (resource description) through a consistent methodol-
ogy and language which describe their characteristics, require-
ments, and capabilities. In fact, the resource capabilities can be
described and derived from hardware descriptions. According
to the application description, the discovery system must be able
to exploit the application resource requirements to generate a
proper query. In the next step, the query explores the network to
find the best matching resources through the evaluation of the
resource description of each resource.

Distributed resource discovery in a large-scale system requires
a scalable and fully expressive resource description, which con-
tains a required level of information details in terms of com-
putational (e.g., processor description) and communicational
(e.g., topology description) properties and behaviors. Most of
the resource discovery behaviors and operational characteristics
are under the influence of the way we abstract, organize and
distribute the individual resource information. For example, in
a typical P2P system, for the purpose of resource discovery,
each one of the peers has to get information from other peers
and disseminates the information to others through neighbor
peers. In this case, it is important to consider the point where
the resource information has to be distributed and get balanced
between peers. It helps to improve the scalability of the sys-
tem when the number of peers grows increasingly. Moreover,
resource description has direct impacts on the indicators such
as the discovery latency (response time), the accuracy of results
(rate of false discovery), the discovery traffic/overload, etc. We
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categorize the approaches for resource description in two groups:
attribute-based and semantic-based schemes.

The attribute based schemes define the resource characteriza-
tions through a set of (attribute, value) pairs. Depending on the
level of information details and the different storage, retrieval
and distribution mechanisms these approaches can provide a
scalable distribution of resource information. However, the
attribute-based description models are facing some challenging
issues such as providing appropriate support for dynamic and
collective attributes [147]. Dynamic attributes are frequently
changing, which results that the description models mentioned
above become unappropriated to store their values due to ex-
pensive updating and maintenance cost. On the other hand, all
resource properties are not independent. Rather, they are related
to each other in some aspects (depending on the level of abstrac-
tion). Therefore, it would be more complicated to exploit all
resource properties and capabilities individually in the form of
(attribute, value), without leading to information redundancy
and inaccurate resource description.

XML, Web Services Description Language (WSDL) [148],
GSDL [149], OASIS Universal Description, Discovery and In-
tegration (UDDI) [150–152] and [153] are some examples of
attribute-based resource descriptions which have been used in
many resource discovery solutions specially in web-based re-
source discovery protocols. WSDL is a set of instructions to
describe the behavior, characteristics, and formats of services,
particularly for web service providers. UDDI uses a XML-based
repository to provide policies and standards for service discov-
ery which facilitate the process of resource advertisement and
service publication. Tutschku et al., a recent work [153], is
proposing a resource description method based on the capabili-
ties of on-board Linux tools for describing resource utilization
in cloud networking and NFV infrastructures. It aims to provide
a description approach for dynamic attributes such as CPU load
and usage. However, the approach is not general (it is based on
Linux) and is limited by a very abstract description of resources
and also the description is restricted to a very few number of
predefined general attributes. In addition to the attributed-based
description languages, there are a number of recent attributed-
based (resource information) encryption methods in the current
literature including [154–159] which are mostly application-
oriented. And in fact, they are not flexible and even efficient to
be used for different applications.

Semantic-based description models are the alternative ap-
proaches which focus on the overall collaborative description
of the resources. These strategies are adequate to describe all
system resources where all the possible collaborative system
and resource properties and behaviors (e.g., the structure of the
processor or memory architectures) are precisely described, but
we must take into account that these approaches might not be
scalable concerning the distribution of the resource informa-
tion. The works in [160–163] are examples of semantic-based
schemes which use functional languages to describe hardware
resources. The use of higher-order functions allows the com-
position of arbitrarily complex structures in a clear and concise
way. The strong type system of most functional languages also
ensures the soundness of the composition of the different hard-

ware components. Functional resource description models focus
on capturing the structure as well as numerical properties of
hardware resources. Resource descriptions themselves are func-
tions, capturing the fact that behaviors/capabilities relevant for
a resource can change under certain circumstances. Addition-
ally, functions can be used to concisely and clearly capture
complex parameterizable collaboratives. For other examples of
semantic-based ontologies we can mention Resource Descrip-
tion Framework (RDF) [164–166], Ontology Inference Layer
(OIL) [167], DAML+OIL [168–171] and DAML-S [172].

RDF is a type of ontology/knowledge representation approach,
which is a primitive language providing a binary relation of
classes and properties supporting all kind of range/domain con-
straints and sub-property/sub-class relationships. It is a powerful
and more expressive language to describe resources in suffi-
cient details. OIL is an extension of RDF while DAML+OIL
is an ontology representation language derived from the work
under DARPA’s Agent Markup Language (DAML) [177] (based
on the OIL language). In comparison to OIL, it provides a
larger interoperability on the semantic level through extending
the OIL and RDF basic primitives along the way to provide an
ontology-based description language with better expressiveness
and capability for inference creation. DAML-S is another work
under the DAML program which provides a set of principles,
basic concepts to describe and declare services/resources, by
implementing the ontology structuring mechanism of DAML.
Each DAML-S service/resource is characterized in three types:
service/resource model (process model), service/resource profile
and service/resource grounding. These describe the service func-
tionalities (i.e., the service composition and the service behaviors
on the run time), the service capabilities (i.e., the required infor-
mation for resource/service discovery), the service access (i.e.,
the service address or the required information for service/re-
source invocation) respectively. In fact, resource model and
resource grounding provide the required information for the in-
teraction between resource providers and resource requesters,
while the resource profile facilitates the process of matchmak-
ing for resource discovery. There are several proposals such
as [178, 179] that utilize DAML-based resource description for
resource discovery.

The Lexical Bridge [180] is a recent work which proposes
a methodology to translate meaningful information in natural
language sources into a standardized, structured knowledge rep-
resentation for semantic normalization, integration, analysis, and
reasoning. However, it is a very general work and in fact, doesn’t
provide a complete resource description language. Rather, it
aims to build ”lexical bridges” (LBs) for filling the gap be-
tween the natural languages and their ontology representations.
The authors in [181] have highlighted that a scalable resource
description and information exchange (concerning the distribu-
tion of resource information between Clouds) is an essential
requirement for sharing heterogeneous Cloud resources among
federated Clouds. However, the work presented in this paper,
a semantic-based resource description model for inter-clouds,
does not provide a scalable solution for distributing all details of
resource information in the entire system. It focuses on provid-
ing a scalable information exchange method between multiple
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Table 4: Examples of grouping approaches for resource discovery (OA: Overlay Architecture).
OA Mechanism Grouping RD Examples

Semantic-Aware Nodes/resources with similar contents are organized in the same
group

Content-based grouping, SON [87] ERGOT [86], and [46]

Proximity-Aware Physically nearby nodes/resources are organized in the same group Content-based grouping CycloidGrid [50], TriPod [49], PIRD [51],
PIAS [173], and ASTAS [174]

QoS-Aware Nodes/resources with similar quality of service are organized in the
same group

Content-based grouping CycloidGrid [50]

Load-Aware Nodes/resources are organized in a particular overlay (e.g, DHT
ring) in order to equally distribute the loads (in terms of resource
information or query workloads) among nodes to enhance the over-
all system performance.

Non-Content based grouping, P2P overlay
network (e.g., DHT based P2P)

PIAS [173] and ASTAS [174]

Super-peer Nodes/resources are organized in a particular overlay (e.g., tree, hi-
erarchy) to enhance the overall system performance.

Non-Content based grouping, Non-DHT
based P2P Overlay

The works in [105, 175, 176]

Tree Load balanced Tree Overlay Tree MatchTree [48]

clouds, where each cloud centrally manages its resources.
Referring to the approaches discussed above, any optimum

resource description model for resource discovery must be de-
signed in such a way that it takes the concerns of both approaches
(attribute-based and semantic-based): capturing individual and
collaborative capabilities of resources while still allowing for the
scalable distribution of this information [181]. Consequently, a
merger of the two above abstraction concepts should be pursued.

3.4. Grouping Approaches (Virtual Clustering)

In Section 3.2.4, we discussed resource discovery and man-
agement approaches for real (physical) clusters including HTC
and HPC. A physical cluster can be defined as a collection of
servers (physical machines) connected by a physical network
topology. In this section, we aim to discuss approaches that
can be used to create virtual clusters/groups (overlays or virtual
topologies) on top of physical clusters/systems for the purpose of
resource discovery. While the term ”clustering” has commonly
been used for similar discussion in the literature, we understand
that this might be misleading for our discussion in this section.
Thus, for the sake of clarity, in this section, we use terms ”virtual
clustering” and ”grouping” interchangeably instead of ”cluster-
ing”. Nevertheless, here the term ”virtual clusters” should not
be confused with the concept of virtual clusters which are built
with virtual machines.

Virtual clustering is the process of creating virtual groups
(overlays) and altering the underlying physical network topology
to increase the overall system performance. Nodes and resources
are grouped in virtual clusters, which share common specifica-
tions, properties, operations or behavior. Overlay construction
and grouping enhance the efficiency of the query/information
management and resource advertisement for the resource discov-
ery systems. It must be taken into account that the system over-
lays have impacts on a set of important discovery performance
factors such as scalability, efficiency and even reliability and
dynamicity. Grouping approaches may provide some inherent
features like locality-awareness, which could bring benefits to
enhance the discovery mechanism. Furthermore, grouping strate-
gies can be used to overcome some shortcoming of DHT and
P2P based designs. Examples of these advantages include the
ability to support proximity-awareness and semantic-awareness
querying while purely P2P based approaches do not support
these features. Besides, grouping mechanisms can enhance the
degree of resource-awareness in the network, resulting in fast

and efficient resource discovery. By virtual clustering, the group-
ing of the nodes in the system can be performed based on some
similarity between resource characteristics of nodes, meaning
that each group (group-leader/group-user) already have some
predictions (knowledge) about the potential resources that might
be offered by group members. This facilitates the resource dis-
covery procedure by reducing the search space. The search is
only conducted in the groups where they can potentially offer
the desired resources for a given query, instead of searching all
groups in the system. Grouping also matters for automatically
creating the underlying virtual structures required for the process
of resource discovery. For example, for developing a hierarchi-
cal resource discovery, it may be required to build an underlying
virtual hierarchy in a dynamic manner, using a grouping strategy.

Overall, we can classify the grouping methods (see Table 4)
for resource discovery in three main groups: quantity-based
(non-content based), quality-based (content based) and hybrid
grouping.

In quantity-based grouping, overlay construction involves
the methods to organize nodes/resources in the groups without
considering the content (for example, in terms of attributes,
features, properties, behaviors) of nodes/resources. For this
purpose, the focus might be on some performance related issues
such as load balance, maintenance, self-organization, stability
(churn and fault tolerant), while the overlay must be constructed
along the way that finally satisfies all the requirements of a
resource discovery protocol which aims to run on top of it. Super-
peer is a type of quantity based grouping.

Super-peer based discovery systems aimed to provide an opti-
mum solution to achieve a balance between the built-in efficiency
of the hierarchical/centralized system, and the load balancing,
self-organization, and fault-tolerant features provided by P2P
based discovery systems. Kazaa [182] is an example of the
super-peer model which designates the more stable and robust
nodes as super-peers. The new member must find the closest
existing super-node in the network and establish the overlay
connection to that node. Kazaa has initially been used for file
sharing purposes. However, its concept can be extended to use
for general resource sharing, even of computing resources. Upon
joining a new node to the overlay, it sends its list of resources
to the super-node. The super-node registers the resources infor-
mation of the individual nodes in an indexed directory. Each
requester sends its requests to the super-node. Afterward, the
requester searches for the required resources in its local index
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directory and, if the desired resources are not locally available, it
propagates the query to another supernode in the system. Kazaa
is also able to perform the keyword search and provides some
flexibility for querying. The works in [105, 175, 176] are other
examples of super-peer based discovery systems. These solu-
tions enable efficient discovery of the resources belonging to one
super-peer. However, they do not introduce any further improve-
ment for P2P based resource discovery over several super-peers.
section

Quality-based grouping approaches organize the groups based
on the content similarity of each node/resource in different
aspects. According to the different views and definitions of
the concept of the content similarity, there are several well-
known approaches for content grouping which shapes the dis-
covery mechanisms in the directions. Proximity-ware [183–187],
semantic-aware [188–192] and QoS-aware [193–195] resource
discovery are the sample applications of content-based group-
ing. Proximity-aware grouping approaches (like TriPod [49])
organizes the close resources in the same group while semantic-
aware grouping methods [46, 196] organize the semantically
similar resources in the same group. Depending on the strat-
egy, virtual clustering can preserve both locality and similarity
features.

QoS is one of the most important aspects of resource dis-
covery systems in large-scale environments, especially in Grids
and Clouds [197]. It must be taken into account that the QoS
concept is not only limited to network capabilities like network
bandwidth, rather it is extended to all kind of computing and
storage capabilities. In fact, when a task with QoS conditions is
submitted to a Cloud or Grid system, it would be necessary to
negotiate a SLA to guarantee the quality of the requested service
according to the QoS conditions. Accordingly, resource reserva-
tion is one of the best mechanism benefiting from QoS. As an
example of QoS-aware resource discovery, the MDS Globus pro-
vides this kind of resource reservation capability [16]. However,
this reservation has a poor efficiency to guarantee the bandwidth
for the network links which results that the system would not
be able to secure the reservation of the processing cycles for
the application segments that communicate over those network
links.

As we described in Table 4, QoS-aware grouping is a type
of content-based grouping where resources with similar quality
of service are organized in the same group. Control Groups
(Cgroups) [198] is an alternative grouping solution, designed
for Linux systems, which can guarantee QoS for resource allo-
cation and scheduling. However, in contrast to our discussion
in this section, this approach provides a fundamentally different
concept of grouping. Cgroups are user-defined groups of tasks
(processes running on a system) which are configured manu-
ally by the user. In fact, the grouping is based on the manual
configuration of tasks instead of automatic self-organization of
resources. Accordingly, hardware resources can be appropriately
divided up and allocated to the defined Cgroups of tasks.

Currently, most of the Grid/Cloud systems provide only a
partial solution for QoS, due to the point that the majority of the
processor operating systems do not provide explicit performance
guarantees. The partial QoS solution means that the system

provides the capability to specify QoS conditions at the time
of job submission while it does not have support for resource
reservation mechanism.

4. Design Aspects

For designing a resource discovery approach, it is required
to specify which design choices to make for different parts of
the discovery process. A resource discovery system, first, must
be initialized through using a bootstrapping mechanism. We
must also specify an overall discovery strategy. According to
the overall strategy of the discovery, an adequate search method
must be applied for directing and processing the queries in the
system. In this way, it might be necessary to specify a method
for the propagation of queries in the system. Furthermore, it
is important to provide a strategy for information delivery by
queries (each query may contain certain types of information
which are delivered between different entities in the system). A
discovery approach also needs to provide a mechanism for query
termination. Otherwise, a query may search forever, or multiple
computations of a single query might happen in different places
of the system, due to the same query arrival through different
discovery paths.

4.1. Bootstrapping

Bootstrapping is the process that occurs when a new element
joins the discovery systems. The new node may not have infor-
mation about the other nodes/resources in the system overlay.
Thus, in the first step, it is required to discover a node (boot-
strapping node) that already belongs to the network overlay, or
at least has some initial information about the system. This
preliminary information may include the address of the resource
provider nodes, the super-peer nodes, the directory agents, the
server nodes, the neighboring nodes or even the multicast ad-
dress of the group. In other words, the new nodes will join an
existing system through asking a bootstrapping node for a list of
already known nodes to which it uses later to perform a resource
query.

There are several mechanisms [199] for bootstrapping. In a
small network, the new node can announce its presence through
conducting a simple flooding. Since flooding is not efficient in
larger networks, multicasting can be used instead of flooding. In
centralized structured systems, it would be easy to use a service
like Domain Name System (DNS) [200], thus, the new nodes
can easily use the DNS to get the server address. In traditional
service discovery systems[201] like SLP [202], both service
and user agents try to find a directory agent (Active method)
for either service announcement or service discovery. The Pas-
sive approach lets strategic nodes such as directory agents or
bootstrapping neighbor nodes to periodically announce their
information in the system through multicast or even broadcast.
Generally, in decentralized and in unstructured systems, the new
node asks the bootstrapping neighboring nodes for information
about the system overlay. The bootstrapping nodes can be ei-
ther a central registry server or any node that already belongs
to the network. The problem is that the central registry server
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potentially becomes a single point of failure and, in the lack of
bootstrapping node in the neighborhood, a non-bootstrapping
node may not provide enough information to determine the po-
sitioning of the newcomer nodes in the system overlay. Other
possible techniques for bootstrapping in P2P environments can
rely on mechanisms to determine the initial neighbors, such as
caching (i.e., using the previously stored list of active nodes),
and local network broadcasting [192, 203].

4.2. Discovery Strategies

Discovery strategy specifies the overall approach for sharing
resources information across the system. A search method for
handling queries can be designed with respect to an overall
discovery strategy. In general, there are three types of discovery
strategies (i.e., modes of discovery operation): Reactive (pull-
based), Proactive (push-based) and Hybrid.

In the Reactive mode, the requester creates a query and sends
the query to either a resource provider or a resource directory
agent. Since the destination of the queries is already known, it is
not necessary to flood the system. In the case that the directory
agent or resource provider does not exist, the search range can
be expanded by increasing the number of hops. Therefore the
requester would be able to find the nearest resource providers
or directory agent. This can be done by using different propa-
gation mechanisms such as unicast, multicast or broadcast. The
requester can simultaneously send the query to one or multi-
ple resource information providers. The Reactive mode avoids
flooding by eliminating advertisements. The drawback is that
query messages take longer to find resources, due to the blind
nature of the search mechanisms.

In the Proactive mode, the information providers (resource
providers or directory agents) periodically advertise their re-
source information to the environment. Therefore every node in
the system can update their information. Using this information
helps the requesters to resolve most of the queries locally. How-
ever, it might be possible that, in a given time frame, the local
resource information is not up to date and leads to invalid dis-
covery results, decreasing system accuracy. On the other hand,
system maintenance based on periodical updates (i.e., broadcast-
ing the resource information to other nodes) is not cost-efficient
and creates a significant amount of network overhead.

The Hybrid mode uses the advantages of both Reactive and
Proactive mechanisms by combining and aggregating these
mechanisms for all kinds of discovery components such as re-
source providers, resource requesters and directory agents. As
an example of Hybrid mode, we can mention cluster-based re-
source discovery protocols, which use Proactive mode within the
clusters (intra-cluster discovery) and invoke the Reactive mode
for searching between clusters (intercluster discovery). When
the number of resource requesters is significantly more than
the number of resource providers, the Proactive mode provides
better performance in terms of latency and overhead while for
the environment which has a large number of providers with few
requesters the Reactive mode is more efficient [204, 205]. How-
ever, in both cases, the Hybrid mode provides better performance
[206].

4.3. Search Algorithms

Search techniques are the most challenging part of resource
discovery systems. There are various techniques to discover and
locate resources in the network, which are differentiated based
on their algorithms and the target usage environment [3, 4, 10].
For example, in a small network, with a limited number of re-
sources, no complex search method is required. A node can
simply discover other resources by using basic broadcasting or
multicasting. Directory-based or centralized systems with a lim-
ited number of servers also do not need a complex propagation
method for querying. However, in large distributed networks,
such as unstructured peer to peer overlays, to support complex
or free-form queries, appropriate search techniques have to be
applied and integrated with the query propagation methods to
increase efficiency and scalability. In this section, we discuss
some of the most well-known algorithms which are used for
resource discovery in large-scale systems. For this purpose,
we classify search methods, in the literature, along with differ-
ent dimensions such as informed vs. uninformed, synchronous
vs. asynchronous, deterministic vs. non-deterministic and bio-
inspired vs. non-nature inspired (see Figure 13).

Figure 13: Search algorithms for resource discovery.

4.3.1. Informed vs Uninformed
According to the system overlay and the distribution of the

resource information, we can classify the search methods in two
groups which are informed and uninformed (blind) search meth-
ods [207]. In the uninformed search approach (blind search),
the sender node knows nothing about other nodes and resources
in the network, while in the informed search approach, each re-
quester or intermediate node at least has some prediction about
the location of the resources requested. Uninformed methods
can be either based on systematic or random algorithms, wherein
systematic approaches, almost the whole or part of the search
tree or graph is explored. In random based algorithms, there
is an option to reduce the size of exploring space by randomly
choosing the next node or invoking some probabilistic technique
to disseminate the query.

The underlying concept of most of the blind (uninformed)
approaches is based on the reduction of communication com-
plexity, resulted from resource information replications. The
complexity can be reduced by limiting the spread of the queries
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through mechanisms such as setting small or dynamic time-to-
live values for query dissemination, forwarding the queries to
only a random chosen subset of nodes or by implementing dif-
ferent strategies for resource information replication like path
replication and uniform distribution across the network. On
the other hand, limiting the spread of the queries may increase
the time complexity of the search method, which leads to slow
resource discovery. Query replication may improve the time
complexity. Following, we discuss some of these approaches in
more detail.

ALG-Flooding [208–210], Breadth First Search (BFS) [211–
213] and Depth First Search (DFS) [214–216] are the most well-
known systematic search methods. Moreover, there are several
other systematic and random search methods such as Depth
Limited Search [217], Iterative Deepening [218], Uniform Cost
Search [219], Random Walk [220–222] and Gossip based search
methods (e.g., Newcast Gossiping [223], works in [224, 225]).
Referring to the aforementioned solutions, there are various
resource discovery protocols that integrate them with their own
query propagation methods such as Probabilistic Flooding [226],
Forwarding Protocols(e.g., Selective Forwarding, Intelligent
Forwarding and Probabilistic Forwarding) [227, 228], Gossip-
based Probabilistic Forwarding [229–232], etc.

In BFS, the search algorithm is deterministic where the algo-
rithm ensures that if the resource is already located in the system,
it will be found as the result of resource discovery. The search
process is initiated by the source requester, which propagates the
query to all of its neighbors. Consequently, the receiving nodes
forward the query to all of their neighbors, except the one where
the original query came from. Additionally, intermediate nodes
avoid further flooding of a query, which has already arrived and
processed earlier. The query terminates either if the query is
resolved or if there is no edge that query has not passed. The
weakness of this method is its huge discovery overhead to find
the required resources (due to the costly nature of the flooding)
(see Figure 14).

Modified Breadth First Search (MBFS) [233] is a variation
of BFS in which the nodes only select some of their neighbors
for query forwarding (see Figure 14). In comparison to BFS and
ALG-Flooding, it reduces the number of transmitted messages
to resolve a query, but it still suffers from large traffic overhead,
which comes from its flooding nature.

In the Standard Random Walk solution [234], the query mes-
sage (Walker) is forwarded to a randomly chosen neighbor at
each step until the required resource is found. It leads to a sig-
nificant reduction in the message overhead, but the solution is
slow and requires a large number of hops to resolve the query
(see Figure 15).

The K-Walkers Random Walk solution [234] reduces the dis-
covery latency (related to the number of hops) in the standard
random walk by increasing the number of walkers. The request-
ing node sends out the query messages (walkers) to randomly
selected k neighbors. Consequently, in each round, the receivers
(intermediate nodes) forward the query messages to a randomly
chosen neighbor. The walkers proceed to walk to the next nodes
until the required resource is found or the query is expired, which
happens after a certain number of hops (see Figure 15).

Query termination can be based on either the TTL method
or by an explicit verification process. The advantage of this
algorithm is its significant overhead reduction in comparison
to other pure blind search methods, while it is faster than stan-
dard random walk. A common problem affecting most of the
blind search algorithms (such as the random walk search) is mes-
sage duplication, which happens in the case that a node sends
duplicate query messages to other nodes regarding the same
query. This creates a significant unnecessary traffic over the net-
work. Moreover, the random walk approach is non-deterministic,
which means its success is not always ensured, and the rate of
successful discovery would be small for the rare resources.

The informed search methods can be classified into two
groups: mechanisms that set specific nodes to act as index nodes
(index servers), and mechanisms where indices are distributed
among all the nodes (i.e., each node can be an index node). The
approach employing specific index nodes has been used in most
of the resource discovery solutions such as Napster, Kazaa, and
JXTA, whereas they utilize a set of servers or super-nodes to
maintain the extra information about their sub-nodes or other
super-nodes/servers. However, these mechanisms are not scal-
able, and they are vulnerable to attacks due to their centralization
of indices in a small subset of the nodes. Along this way, the
solutions based on distributed index nodes such as intelligent
search [233], bloom filter based search [235], local indices based
search [236], routing indices based search [237], dominating set
based search [238] and adaptive probabilistic search [236] are
more scalable and reliable.

4.3.2. Synchronous vs Asynchronous
We can model the resource discovery problem (specifically

in a decentralized fashion) using concepts from graph theory,
where the computing nodes and communication links, are repre-
sented by the graph vertexes and graph edges. At the initial state,
some of the nodes may know about the resources of some other
nodes, for example, each node possibly knows about a set of the
original neighbors. Furthermore, each communication link be-
tween two nodes demonstrates that those nodes know about each
other. These relations and the environment can be presented as
a weakly connected graph (uninformed model). The resource
discovery search algorithms can be defined as the solutions that
can converge the above mentioned weakly connected graph to
a complete graph, where all the computing nodes know about
resources of other nodes in the network. In this way, to pro-
vide an efficient search algorithm, the network communication
complexity, and the number of required rounds for graph con-
version (in terms of time, hops or cycles), must be low. Based
on the above abstraction, we can classify resource discovery
algorithms in two categories: synchronous and asynchronous
methods (see Figure 13), where this latter can be either informed
or uninformed, deterministic or non-deterministic.

In synchronous methods [112, 239–242], the search algorithm
proceeds synchronously, in parallel rounds, where each round
is defined as the time required for each node in the network to
communicate with one or more other nodes, learning about them
and gathering information. Asynchronous methods [243–245]
are based on the asynchronous communication model, where
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Figure 14: Examples of query processing using BFS and MBFS.

Figure 15: Examples of query processing using Standard Random Walk and K-Walkers Random Walk.

each node can send a message in arbitrary size to any of its
neighbors in a way that the outgoing message eventually arrives
in the destination node after an unbounded finite time. Moreover,
unlike the synchronous method, there is no assumption to start
the algorithm simultaneously on all the nodes, and the receiving
nodes simply follow the First-Input First-Output (FIFO) model
to serve the requesters.

Harchol et al., [112] discussed some well-known natural al-
gorithms such as ALG-Flooding [246], Swamping [246, 247],
Random Pointer Jump [246] and presented Name-Dropper [112]
to perform a synchronous resource discovery. Table 5, com-
pares these algorithms to other approaches on three performance
measures: time complexity, pointer complexity, and message
complexity. For a discovery request: the time complexity is
the number of time steps taken; the pointer complexity is the

number of nodes/pointers (e.g., machine addresses) passed; and
the message complexity is the number of messages sent. In the
following, we discuss these algorithms in more detail.

When using the ALG-Flooding algorithm, each node only
communicates with its (manually configured) initial set of neigh-
boring nodes. Thus the newly added edges are not used for
communication. In each round, every node sends updated in-
formation, including the new nodes that joined recently (see
Figure 16). The number of required rounds to converge the
graph to a complete graph depends on the diameter of the ini-
tial graph. Furthermore, in the ALG-Flooding algorithm, every
pointer information must be transmitted over every edge in the
initial graph. Thus, the network (or communication) complexity
of the algorithm (concerning pointer and message complexity)
depends on the number of edges in the initial graph. Using

Figure 16: Examples of information dissemination using ALG-Flooding and Swamping.
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Table 5: Comparison of some well-known synchronous search algorithms for state discovery.

Search Algorithm Time Complexity Communication Complexity

Pointer Complexity Message Complexity

Absorption [248] O
(
log n
)

O
(
n2
)
, O
(
n2 log n

)
O (n), O

(
n log n

)
Kutten & Peleg [249] O

(
log n log∗ n

)
O
(
n2 log2 n

)
O
(
n log n log∗ n

)
ALG-Flooding [112] dinitial Ω (n · minitial) Ω (dinitial · minitial)
Swamping [112] O

(
log n
)

Ω
(
n3
)

Ω
(
n2
)

Random Pointer Jump [112] Ω (n) in worst case number.o f .cycles · minitial number.o f .cycles · minitial

Name-Dropper [112] O
(
log2 n

)
O
(
n2 log2 n

)
O
(
n log2 n

)
Fast-Leader [250] O

(
log2 n

)
O
(
n2
)

O
(
n log2 n

)
flooding-based methods for resource discovery in environments
like large-scale Grids will reduce the overall system performance
since flooding increases network traffic congestion.

Swamping is a flooding-based search algorithm with the dif-
ference that, each node may send requests to all of its neighbors,
and not only a fixed initial set of the neighboring nodes. Since
nodes transfer the current set neighbors to the target nodes using
the request messages, the neighbor sets are dynamically changed
and updated, which leads to a very fast search algorithm. How-
ever, this speed is achieved at the cost of wasting communication
bandwidth, because many nodes will receive information about
nodes that they already knew about (i.e., they have them in their
local set of neighbors). This increases the network communi-
cation complexity very quickly, which reduces the algorithm’s
performance (see Figure 16).

Concerning the problem of the communication complexity of
the Swamping algorithm, the Random Pointer Jump algorithm
proposes that in each round, every node can only send a request
to a single random neighbor. Upon receiving the request, the
receiver node will send the information of its neighbors to the
node that made the request (see Figure 17). The solution results
in lower communication complexity (i.e., the average number of
transacted messages and visited nodes to resolve a query will be
decreased). However, the resource graph in the initial stage must
be a strongly connected graph (informed model). Otherwise, it
will never converge to a complete graph. Moreover, even for
the strongly connected graph, there is a high probability that the
number of rounds required to achieve a converged graph will be
significant. The Random Pointer Jump with Back Edge [251] at-
tempts to address this problem. Using the Back Edge algorithm,
when a node receives a request, it adds the information of the
sender to its neighboring set. Afterward, it sends its neighboring
information to the requester node. This enhancement increases
the performance of the Random Pointer Jump algorithm, but the
main drawback is that there is still no guarantee that the resource
graph converges after a specified number of rounds.

The Name Dropper is an enhancement to the Back Edge al-
gorithm. In each round, each requester sends its neighboring
information within the request to a single random neighbor. The
receiver will merge the received neighbor information with its
local set of neighboring information. The rest of processes will
be performed just like the Random Pointer Jump with Back
Edge algorithm (see Figure 17). Name Dropper achieves better
performance by providing small communication complexity and
a low number of rounds required. The drawbacks are that the
algorithm is not deterministic and also it is not able to determine
its termination point unless the number of nodes in the graph is

defined in advance. The Fast-Leader [250] algorithm has been
proposed to overcome these drawbacks. The algorithm includes
two steps. In the first phase, the initial strongly connected graph
will be converged to a star graph, where a central node knows
about all other nodes. This is achieved through a leader election
algorithm. In the second step, the star graph will be converged
to a complete graph by using broadcast propagation, where the
central node broadcasts all the information to all other nodes. In
opposition to Name-Dropper, Fast-Leader is a deterministic algo-
rithm, which its runtime (number of rounds required to resolve
a graph) and communication complexity match those of Name-
Dropper. Furthermore, the convergence detection approach (i.e.,
recognizing the termination point of the algorithm, which is the
time that the initial graph has converged) is an inherent feature
of Fast-Leader, and the algorithm halts as soon as convergence
is obtained. However, unlike Name-Dropper, Fast-Leader is
only applicable to resolve the strongly-connected initial graphs.
Another shortcoming is that the algorithm is more resource con-
suming regarding the memory usage and computation cycles per
node in each round.

The above mentioned natural synchronous search methods
have been used in many resource discovery approaches for dif-
ferent environments like Grids. However, these algorithms, in
general, have some critical weaknesses. They do not support
(or weakly support) dynamic environments considering different
dynamicity issues concerning rapidly and frequently changing
network topologies (i.e., node arrival, node departure, node fail-
ure, resource expiration, or adding new resource) and resource
attributes (e.g., CPU load, memory utilization). For example,
after running the algorithms (by converging the system resource
graph to a complete graph), each node will have the informa-
tion about all of the other nodes in the network. However, this
would be useful only for static information, with the additional
assumption that the system is static and reliable, which is far
from real. In a different way, each node requires iterating the
search procedure for updating its information, potentially result-
ing in inefficiency. Furthermore, using periodic updates also
creates a huge amount of network overhead.

Essentially, in a real environment, it is not necessary that all
nodes in the system simultaneously know about others, due to
the fact that the transaction and maintenance of a significant
amount of redundant information over the network is a waste of
resources. For example, a resource discovery approach might
be interested in only discovering the closest resources inside the
border with a specific number of hops or latency.
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4.3.3. Gossiping-Based Approaches

In gossiping, two random, non-requester members of a group
repetitively talk (exchange information) about a query, generated
by a requester in the system. Gossiping might be strongly related
to epidemics, by which a disease is spread by infecting members
of a group, which in turn can infect others. Epidemics refers to
information dissemination between randomly selected members
where the information (i.e., the “disease”) can be communicated
among an expanding number of members [252].

In order to solve the problem of dynamic load balancing, Gos-
siping based search methods (Epidemic Query/Information Dis-
seminations) provide alternative mechanisms to perform queries
in the distributed environments whereas they have shown effi-
ciency in information dissemination. They are based on flood-
ing, but in a manner that generates bounded worst-case network
loads. In general, to find a match for a resource request using
a Gossiping protocol, the requester node starts to gossip about
the required resource with some other randomly selected nodes
(e.g., picks one of the neighboring nodes). Thus, the query (re-
quired resource) will be known for both of sender and receiver
in the first round. Consequently, in the next rounds, each node
that already knew about the query repeats the process by gos-
siping to another randomly selected neighbors (i.e., periodical
querying/updating respectively by exploiting either push based
or pull-based approaches) until the query is matched or the query
is over aged. Nodes also gossip about the best match after they
find the matches, (i.e., the best matches will spread through the
network). Gossiping based solutions might be considered as a
type of epidemic protocol because a node that gossips a query or
a resource information can be seen as it infects its neighbor. The
advantage of Gossiping is its robust capability for disseminating
and delivering contents to (almost) all destination peers with a
very high probability [227, 253, 254]. Thus these solutions may
become fast, scalable and load balanced since they provide a
statical guarantee on the number of nodes involved during the
query/information dissemination process. Moreover, they are
resilient to topology changes and churns due to their decentral-
ized nature. The drawbacks come from the fact that Gossiping
based search methods are more concentrated on the load bal-

anced query/information dissemination and they do not provide
approaches in other aspects, such as the way to route queries,
or mechanisms to match a query to a resource description. The
works in [229, 255–258] are some examples of gossip based
resource discovery protocols.

4.3.4. Bio-Inspired Approaches
Bio-inspired search methods (see Table 6) are based on bi-

ological systems, which have native capabilities to exhibit au-
tonomy in various levels, ranging from molecular independent
self-management and self-organization of organisms to the large-
scale adaptation of animal in communities and colonies. Other
than autonomy, these systems have some other desirable inher-
ent properties such as scalability, adaptability, and robustness,
which create motivation to apply bio-inspired search methods
to discovery systems. A bio-system contains bio-organisms in-
teracting in a bio-environment where bio-organisms are the self-
organized autonomous entities without any central controller,
and the bio-environment provides a medium for communication
and interacting between bio-organisms.

There are a lot of similarities between the behavior and char-
acteristics of the components of any distributed systems (e.g.,
P2P overlay) and the behavior of bio-organisms in the biological
systems. Examples include birth (joining new member), death
(node departure or failure), migration, replication, division, find-
ing the food sources (resource discovery), chemical signaling
(communication messages). As a specific example, for resource
(food) discovery in biological systems, a bacteria can release
a chemical signal that produces chemical gradients in the en-
vironments. Thus other bacteria in the vicinity can detect the
gradients and know about the location of other signal-emitter
bacteria. This mechanism can be used to disseminate the loca-
tion of the source food, which has been already discovered by
any one of the individual microorganisms. Another example is
the mechanism that a colony of ants collaboratively use to find
the food source, and build the shortest path to the colony.

Bio-inspired search algorithms for resource discovery have
been studied and proposed in several research works. As ex-
ample of this kind of search methods we can mention Tabu
Search [280, 281], Ant Colony Algorithm [265, 266], Immune

Figure 17: Examples of information dissemination using Random Pointer Jump and Name Dropper.
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Table 6: Summary of bio-inspired search methods (SA: Search Algorithm).

SA

Description

B
ee

C
ol

on
y

[2
59

–2
63

] A swarm-based optimization algorithm which is inspired by foraging mechanisms of honeybees. The scout bees stochastically search (global search) the new food sources,
upon finding a new source, they will transfer the flower information by performing waggle or round dance. On the other hand, the worker bees evaluate the quality of the newly
discovered flower sources through observing the dances and choose the elites (best sources) for foraging. Bees must avoid overcrowding and keep diversity, for this reason, they
scatter in the proximity around the elite flowers (local search) while at the same time the scout bees start a new iteration of the global search. Bee Colony Algorithm (BCA)
divides the search process into two steps, parallel implementation of the global search (parallel random search in variable space by scout bees) and the local search which is the
local improvement of the current elites by worker bees. The elite selection mechanism in each iteration compares the quality of the discovered solutions from global search and
local search with the quality of the elites in the last iteration.

A
nt

C
ol

on
y

[2
64

–2
67

] Ant Colony Search is a meta-heuristic search method based on Ant Colony Optimization (ACO) which is inspired by the behavior of the real ants searching their environment
to find the food sources. The ants (queries) start their search by randomly parallel scattering around the nest. The successful ants whose found the food sources (resources)
will return to the nest using their memory and mark the (successful) path (between nest and food source) through emitting a chemical substance called pheromone on trails.
The other ants, coming across the trail, follow the marked path instead of wandering randomly to check the food source. If they become successful to find the food, they will
return the nest and reinforce the pheromone on the trail. For selecting a trail, each ant makes a local decision by comparing its experience with the environmental information
(trails) which is updated by other ants and finally it selects the strongest path(trail) in terms of the density of pheromone considering the fact that the pheromone evaporates over
time. In other words, in the intersections, the ants prefer to choose the strongest trail through comparing the already available trails marked and modified by different ants (i.e.,
indirect communication or stigmergy) instead of direct communication and exchanging information with other ants. Using this approach the pheromone of the paths with the
long distance source will be more evaporated than the shorter tracks since for the long paths it takes more time for the ant to reach the nest. Thus, the density of the pheromone
in the shorter paths would be higher than the longer paths. This leads to discovering the closest resources with higher probability. The ACO based search methods make
benefits [266] for resource discovery in terms of autonomy (the nodes do not have any global information), parallel search, proximity-awareness (quick convergence to near
optimal solution), efficiency (prevents a large-scale flat flooding [268]), flexibility (supporting multi-attribute range query [268]) and robustness (concerning system workload).
There are several proposals for ACO based search methods such as Semant [269], NAS(Neighboring Ant Search) [270], ACS(Ant Colony System) [271] and Max–Min Ant
System [272].

N
eu

ra
lS

ea
rc

h
[2

73
] Neural search is based on Artificial Neuron Network (ANN) [274] wherein a set of neurons (computing units, nodes or computing elements) are connected together to construct

a network which mimics a biological neural network of the brain. Artificial neurons are the simple modelings of brain cells which are connected using both of feedback and
forward links with different dynamic weights that create an adaptive system. The adaptive weights are the numerical parameters that are tuned by a learning algorithm during
run time (or training/prediction phase), and conceptually they clarify the strength of the links which can be used for the link evaluation in the process of neighbor selection of
the neural search. NeuroSearch [275] is an example Neural search which attempts to solve the overhead problem of the flooding based approaches such as BFS by selecting the
best neighbor for query forwarding based on the individual evaluation of the output of the neural network (for a set of specific input parameters) for every one of the neighbors.
ANN will create deterministic or probabilistic maps between input and out parameters which lead to specifying the weights for each one of neighbor nodes.

V
ir

al
Se

ar
ch

[2
76

–2
78

] Proposes a meta-heuristic search method based on viral infection using a biological analogy. It takes the advantages of Multi Agent Systems (MASs) [279] and combine it with
some well-known approaches in Artificial Intelligence (AI). The viruses in the system are considered as part of the widespread infection, while each individual tries to make its
benefits but leading in the overall benefit of the viral system. It is desirable for viruses to infect the individuals with the minimum level of health. The efficient viral infection
can be achieved by continuously searching the individual microorganisms (e.g., bacteria) that are appropriate for infection (i.e., the best solutions which are the individuals with
the less level of healthy). In this way, the viruses optimize their search results by infecting less healthy individuals (weak solutions). The probability to extend the domain of
infection (in other words, achieving higher access to the new potential results) can be increased by systematically propagating the viruses which are lodged in unhealthy cells.

Search [276], Neural Search [273], Viral Search and Bee Colony
Algorithm [259, 263, 282, 283]. Table 6 briefly describes some
of these approaches.

4.4. Packet Propagation

Unicast is the most conventional communication method in
resource discovery systems. The origin node (sender) explicitly
addresses the receiver and sends any type of messages (e.g.,
query, reply, advertisement, etc.) directly to the destination node
through the network. It is effective since the receiver address
is clear and it does not require to occupy the network band-
width with unnecessary extra communication messages. Also,
the sender can know if the receiver already received the mes-
sage. The problem is that in a pervasive distributed environment
with dynamic resources, the destination nodes are not always
known in advance. Thus it is required to employ other alter-
native propagation methods such as broadcasting, multicasting,
publish/subscribe, manycasting and anycasting.

Broadcasting or simple flooding uses one to all communica-
tion mechanism to send packets to all the nodes in the network or
subnet. Resource discovery systems employ broadcasting in the
absence of predefined servers, which creates a lot of overhead in
the network.

Multicasting for a number of nodes starts through establishing
a multicast group by sending unicast initiate messages to each
other. Once a node sends a message to a multicast address,

it causes several unicast messages from the sender to all the
members of the multicast group. Multicast is used when the
destination nodes are unknown at the source of the message at
the network or link layer, and it is not clear which nodes are
offering the requested resources for a particular query. This
communication model, compared to broadcast, is still efficient.
Publish/Subscribe [284–286] is similar to multicasting in nature;
a receiver node subscribes certain services, which are offered by
publisher nodes, and obtain these services directly or through
intermediate nodes. Publishers constantly report all the service
changes to their subscribers. They may also update intermediate
nodes. Subscribers are not updated immediately, and they should
fetch new data from the intermediate nodes as soon as they
contact them, instead of direct updating.

Anycasting provides the capability to communicate between
a source node and one member (the one closest to the source )
of the anycast group (a group of target hosts). In other words, a
single anycast request will get a single reply, which leads anycast
to be considered as a strong way to make reliable scalable and
transparent communications, with stateless distributed services
such as resource discovery and DNS. For example, in DNS, a
number of replicated DNS servers create an anycast group where
they are listening to a shared anycast address. Upon getting a
request, the DNS server with the shortest path to the requester
will reply the request [287]. For the purpose of resource discov-
ery, due to the inherent single-request/single-response (from the

26



nearest member) feature of the anycast communication model,
and its capability for coarse-grained load balancing between the
members of anycast group, it is useful as a transparent resource
discovery primitive.

Manycast integrates the characteristics and advantages of
multicast and anycast, leading to an efficient communication
paradigm, wherein a source node sends the packets to a specified
number of pre-defined members of a manycast group. In the
following of this section, we mainly focus on anycasting since
we consider anycasting as a powerful paradigm for managing
and locating resources in decentralized distributed systems.

Despite the aforementioned strengths, anycasting has some
limitations and weaknesses [288]. The first limitation is that
session-based applications, such as all the implemented appli-
cations on top of the TCP layer can not benefit of the anycast
addressing mode. This happens because it is possible that the
subsequent packets from the same source node (and session) are
routed to a different target host member of the anycast group
(it has no knowledge of the TCP session state). The second
problem is that anycast IP routing is inherently not scalable. In
fact, the routes to different anycast groups in the routing tables
cannot be aggregated. Widespread adoption causes a massive
growth of IP routing tables, which reduce system scalability. If
the members of an anycast group are scattered over the Internet,
in each routing table, for each anycast group, it is required to
have a distinct routing entry; this is costly due to the limited, effi-
cient size of the routing tables. Moreover, the dynamic behavior
of anycast members (joining and leaving members) leads to fre-
quent changes of routing configurations (i.e., frequent changes
in network topology), which possibly makes the system unstable,
so that the routing and discovering protocols can not operate
efficiently. There is another problem with anycasting that might
affect its performance. The problem is due to the inherent static
target member selection of anycasting which is based on the
fixed indicator of the shortest path. In fact, it doesn’t support
multiple target selection constraints such as network congestion
and current target load. Due to the above strengths and weak-
nesses, TCP-based services are not able to take advantages of
anycasting.

However, anycasting, with its robust native capability to effi-
ciently find nearby resources has been considered as an impor-
tant communication paradigm to enhance the resource discovery
approaches by leveraging the features and capacities, as men-
tioned earlier, through implementing an anycast based system.
PIAS [173] and ASTAS [174] are two examples of anycast archi-
tecture which can be used to implement anycast based resource
discovery systems.

PIAS is an IP anycast architecture, which makes use of a
proxy overlay for advertising IP anycast addresses on behalf of
group members and tunnels anycast packets to those members
[173]. ASTAS is an architecture for scalable and transparent
anycast services, which is based on PIAS. It establishes an
overlay infrastructure compound by two types of nodes: Client
Proxys (CPs) and Server Proxys (SPs). Both of these proxy
nodes act as routers that advertise routes from their neighbor
nodes to an anycast IP range into the routing substrate, by forcing
IP packets containing the anycast members as the destination

address to pass through the overlay. Once a client node initiates
a new session towards an anycast destination, the nearest CP
registers the new session, and afterwards, it selects the most
suitable SP forwarding the request to it. Upon receiving a new
session request by a SP, it selects the most appropriate server
node to process the request. Because of the stateful nature of
proxy components, ASTAS provides more fine-grained and load
balanced distribution of the service request over the available
resources than PIAS.

4.5. Information Delivery
Individual nodes of a resource discovery system need to share

information efficiently. Thus, the information delivery mecha-
nisms must aim at generating little network overhead and band-
width consumption, through the reduction of the volume and
size of exchanged messages. For achieving this purpose, there
are some well-known techniques such as caching, piggybacking
and heartbeat checking.

Caching relies on storing successive resource advertisements
of each node so that new queries for similar resources can be
resolved locally. For example, when a resource matching a query
is found in a node, that node will send the resource informa-
tion backward to the original requester, which leads that the
requester node and each of the intermediate nodes can cache
the information. For the new queries, each node first checks its
local cache to find the query match and, if local matchmaking
is not feasible, the query will be forwarded to other nodes in
the system. The system has to manage stale-information stored
in the cache by either removing expired cache entries or by
eliminating the oldest cache entries, to add new entries when
the cache size limits are exceeded. Using caching mechanism
can improve system efficiency (in terms of overhead, latency,
bandwidth consumption and query workloads) by handling the
queries locally instead of doing global query processing. Since
consequent computing applications or application segments fre-
quently require almost similar resources, caching the result of
the previous queries might be useful to avoid repeating the same
queries in the next discovery cycles.

Caching-based techniques have been widely deployed in many
resource discovery research efforts. For example, some works
[204, 258] propose an efficient resource discovery protocol
based on proactive information caching, which supports the con-
struction of self-structured overlays. They have an ant-inspired
algorithm that uses selective flooding to exploit local caches, in
order to decrease the number of explored nodes for each query.
Caching mechanisms have been further improved through pe-
riodic exchanging of the cache contents between neighboring
nodes, through an epidemic replication mechanism based on
gossiping. Leveraging the caching mechanism enhances the
system performance by reducing the number of hops to locate
required resources and decreasing the overall discovery loads.

Piggybacking means responses can be included on top of
acknowledgment messages. In other words, a regular reply mes-
sage can carry (piggyback) extra information. Piggybacking
might be costly in terms of the amount of information transacted
in the system. However, it can significantly reduce the number
of messages to resolve a query. For example, works include
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[289–292] use piggybacking technique to facilitate information
delivery. Unlike piggybacking, in heartbeat checking [293], a
sender node periodically sends a signal (a very small amount of
information) to other nodes, updating the status of the sender
(e.g., in terms of availability). This mechanism is more com-
patible with the proactive discovery strategy, where a resource
provider periodically advertises its resource information to the
clients (e.g., subscribers).

It must be taken into account that the efficiency of an informa-
tion delivery mechanism is largely dependent on its adaptability
to the underlying computing environment. This is particularly
important for highly dynamic computing environments. In such
environments, it is significantly hard to maintain and analyze
the reliability of the resources since available resources change
rapidly, meaning that existing ones are removed or new ones are
added frequently. Among the information delivery methods dis-
cussed above, heartbeat checking exhibits better adaptability to
dynamic environments since it is based on real-time availability
checking of resources. Caching-based methods may suffer from
the unreliability of cached resource information due to rapid
changes in the environment. Piggybacking may provide better
efficiency compared to caching. However, piggybacking can
impose extra loads on reply messages without guaranteeing the
availability of resources.

4.6. Query Termination

In general, the resource discovery process starts by sending a
query message to the network, where intermediate nodes/agents
spread the query through different search and forwarding tech-
niques (See Section 4.3). However, the query must be terminated
at some point under some specific conditions. Otherwise, the
discovery procedure would not be under control, resulting in the
creation of extra unnecessary network overhead, without having
a guarantee of finding the required resource. The following com-
mon situations describe how a query can be terminated, either
by natural mechanisms or by a query termination method.

A) The resource required for the query is found in the current
node, in which the query instance resides. Thus the query is
successful, and the query response must be sent to the original
requester either through direct communication or back-tracing.

B) The query already has visited all nodes in the system.
Therefore, the query is stopped and deleted. The last visited
node may report the query status to the originating node. The
results inform the source node that the required resource does not
exist in the system. Queries leave marks at each explored node,
indicating that the query already visited this node. However,
using blind searches (for example, in an unstructured system)
it is a challenging issue to ensure that all nodes in the system
have been explored by a particular query, since, the number
of the nodes in the system as well as the network topology is
unknown. On the other hand, even in a known system, a query
instance may know how many and which nodes were visited
by itself. However, it would be more complicated to know
about other instances of the query, since communication and
synchronization between several instances of the same query
generate extra overhead.

C) The query is not able to be further forwarded to the next
hop. Thus the query is stopped and deleted. This happens
because of two possible reasons: First, the current node is a leaf
node, which means that there are no more neighboring nodes
to forward the query along, or the query was already sent to
all neighbors. The second reason is that the query’s TTL has
expired.

Iterative Deepening is one of the termination techniques that
can be used when the TTL expires while the query is not re-
solved, and perhaps the search space was not completely ex-
plored. If the originating node, after finishing an iteration (i.e.,
upon receiving the TTL expiration notifications from all the
instances of the query) does not receive a query response re-
garding its required resource, then it starts a new iteration by
resending the same query with increased TTL, to search within
a larger radius of the search space. This process is repeated
in the next iterations until either the query is resolved or the
query’s specific timeout is reached. The query timeout may be
different from TTL, which is the number of visited hops by a
query. The drawback of this solution is that, in each iteration,
the query propagates through a substantially larger portion of
the same nodes that have already been visited in the previous
cycles, creating unnecessary search overhead.

Checking [234] is another termination mechanism which can
solve the problems of Iterative Deepening. When a query-replica
reaches a point that its TTL is expired, the node sends a specific
checking packet to the original requester. Upon receiving the
checking packet, the requester will see if the query already is
resolved by other query instances. Otherwise, it sends back
the checking packet including the information to increase the
TTL of the query replica, and then the query proceeds being
forwarded. Each query replica sends the checking packet either
periodically after n hops or after TTL expiration. The drawback
is the use of extra communication to exchange the checking
packets.

Chasing Wave [294] is another possible approach. Upon
receiving a query response from any one of the query replicas,
the originating node sends chase packets to chase, and stops
the other active query replicas. This mechanism works based
on the concept that chasing packets traverse faster than query
packets and it can be implemented by increasing the delay before
forwarding, as the distance of the query replica to the originating
node becomes longer. The paths to the active query replicas can
be traced using their marks on the intermediate nodes, which
indicate each query’s next hop. Using this method may impose
slower discovery process by increasing the delay before a query
forwarded from far nodes.

Backward Synchronization is another alternative termination
approach, triggered when a query-replica faces a deadlock, and
the query is still not resolved. The deadlock might happen when
there is no neighboring node (except the node where the query
came from) to forward the query. It may also happen if all
neighbors already have been visited by other query-replicas, or
in the case that the query’s TTL is expired and we do not want
to extend the search diameter to discover far distance resources.
In such a situation, the current node sends out the query back-
ward to its parent node (the previous node that sent the query
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replica) while it decreases the TTL of the backwarded query.
The backward query message will proceed to the parent node
in the normal way (for example, by forwarding the query to a
randomly chosen neighboring node which has not been visited
by other query replicas). In any stage, if the query faces a new
deadlock, the backwarding is replicated unless the query is re-
solved or the originating node becomes the parent node. Like the
Chasing Wave approach, queries leave marks on visited nodes
indicating their next hop. This information is used for back-
wardness and determining the visited neighbors by other query
replicas. This Backward Synchronization method can be used
for search methods like Random Walk. Using this technique
(along with flooding approaches) might not be efficient because,
in flooding-based search methods, all the possible behind paths
have already been explored, leveraging a large enough number
of query replicas.

5. Evaluation Aspects

In the current literature, there are a set of major challenging is-
sues for resource discovery in large-scale distributed computing
systems including scalability, efficiency, reliability, flexibility,
and heterogeneity. In this section, we discuss these issues, and
accordingly, we provide a set of evaluation aspects which must
be considered in the evaluation of any discovery approach. Table
7 provides an overview of the most important performance fac-
tors (i.e., evaluation metrics) for assessing discovery protocols
[295–299]. In the remaining of this section, we further discuss
these issues and relevant evaluation strategies to measure the
performance factors.

5.1. Efficiency

The efficiency of a resource discovery solution can mostly be
represented and demonstrated along the following conceptual
metrics and functionalities.

Discovery Latency: One of the most important performance
metrics for resource discovery protocols is the discovery re-
sponse time or the end-user latency. The discovery latency in
distributed systems might come from different sources, which
are mostly related to the network transfer times, query process-
ing algorithms, type of querying (e.g., the number of dimensions
in multidimensional querying), network size, computing envi-
ronment and the amount of parallelism (e.g., the number of
walkers). In the case of network transfer times, the possible
efforts to minimize latency is to reduce the number of bytes sent
and also the number of times they are sent. Thus, the discov-
ery mechanisms and algorithms are required to be optimized to
transact the discovery messages (e.g., requests, replies, updates,
etc.) with regards to minimizing network bandwidth. In this
way, metrics such as the discovery load (i.e., the average number
of transacted messages per query), the number of hops per query,
and the number of explored (visited) nodes/resources per query
can be used.

Load Balance: During a discovery procedure, the query/dis-
covery load will be distributed among all potential resource
information providers. Employing a load balanced technique for

querying will enhance the total scalability of the system. Fur-
thermore, since resource information providers are completely
distributed in the system, and querying mechanism follows a
symmetrical distribution, it also prevents any centralization, bot-
tlenecks and single points of failures.

5.2. Scalability

Scalability for resource discovery represents the ability to
cope with variations in the system effectiveness. The effec-
tiveness can be measured in terms of the system’s performance,
throughput and QoS seen by the resource discovery clients, while
a set of critical system parameters are changing (e.g., the system
size is increasing) (see Figure 18). The discovery clients can be
defined as end users (or job schedulers) in Grid or Cloud, pro-
cess managers in distributed operating systems, and applications
in HPC.

It must be taken into account that scalability is one of the
most important key factors to evaluate distributed systems in
large-scale environments. Referring to the nature of large-scale
computing in LDCE, the system size is the most significant
changing factor for scalability evaluation in the majority of the
resource discovery research works (other changing parameters,
such as query types and query dimension, are occasionally con-
sidered for study). Increasing the system size has an impact on
the system performance by creating larger communication over-
head, which increases network latency and results in an increase
of the discovery response time (or discovery latency). Thus, the
communication cost can be measured concerning the number of
transacted messages among the distributed nodes during query
processing for a particular application resource request.

The ability of the system to grow in terms of available re-
sources/peers, such as cores/nodes, without impacting overall
system performance will impose conditions/restrictions in var-
ious aspects such as system architecture, overlay construction,
communication model and query processing. In the remaining
of this section, we address these aspects.

In order to avoid any central point of failures and bottlenecks,
discovery systems ideally should avoid relying on centralized ar-
chitectures. However, implementing an efficient fully distributed
design is not attainable or has drawbacks as well. Therefore,
depending on the case, a hybrid architecture such as a distributed
hierarchy might be useful. We must note that in a distributed
system it’s impractical to have a global view of the system while
making it scalable, instead it is possible to make specific queries
to the system, but it leads to a more limited view of the system.
Furthermore, the distributed architecture must be loosely cou-
pled between nodes. The advantage is that nodes are not affected
by failures in other nodes.

The ideal system behavior would be for the communication
overhead (number of exchanged messages) or query response
time (as the result of decreasing overhead and latency) to stay
constant as the number of nodes/resources (e.g., processors)
increase. In a system that is not scalable we will expect that
the system eventually reaches a point where the discovery la-
tency/overhead grows significantly worse with the system size.
Due to the aforementioned impacts on the scalability of the other
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Table 7: Overview of the evaluation methods for resource discovery.
PF Evaluation Methods Description

Scalability Quantitative Assessment (e.g.,
Overhead, Discovery Latency,
Bandwidth Consumption, Query
Load)

The capability of the resource discovery protocol to maintain its performance regardless of the other system parameters such
as network size, query dimension, and environment dynamicity. For example, in a large many core system, we must clarify
whether the discovery procedure is system size independent in the case of performance, throughput, and overload or not.
Besides, the discovery protocol must scale up and scale out efficiently across multiple/many cores, multiple/many processors.

Efficiency Quantitative Assessment (e.g.,
Network Overhead, Discovery
Latency, Bandwidth Consumption,
System Utilization)

The ability of the system to be cost efficient concerning computation and communication cost in all of three discovery stages:
establishing the system, performing resource discovery and system maintenance. (e.g., the discovery must be fast as much as
possible). The ability of the system to maximize the utilization of all the potential resources (e.g., idle cycles).

Reliability Quantitative Assessment (e.g., The
rate of successful/unsuccessful
querying, Recovery Time)

They ability of the system to prevent and manage faults. (e.g., unavailability of peers/resources) The discovery results must be
accurate. (e.g., non-deterministic search results )

Flexibility Qualitative Assessment The ability of the system to perform different type of Complex querying such as Multi-Dimensional, Range, Multi-Dimensional
Range, Aggregate, Nearest Neighbor , Exact, Partial and Keyword Querying.

Dynamicity Qualitative Assessment The ability of the system to cover different kinds of dynamicity. (e.g., dynamic attribute values of resources, frequent arrival,
departure and failure of the nodes)

Heterogeneity Qualitative Assessment The ability of the system to work in the environment with different types of heterogeneous resources. (e.g., Low-Heterogeneity:
resources with different attribute values, High-Heterogeneity: resources with different set of attributes)

Grouping Qualitative Assessment The ability of the system to establish a self-organized overlay or platform which can support some valuable inherent features
such as proximity-awareness, semantic-awareness, and QoS-awareness

Autonomy Qualitative Assessment The ability of the system to be purely decentralized. The autonomy of the peers to local control and manage their data and
behavior.

Figure 18: The important elements which have impact on the scalability of a resource discovery system.

important system factors (such as performance and resource uti-
lization), it is possible to evaluate the scalability of the discovery
system by studying and analyzing the system effectiveness.

In order to create a highly scalable system, discovery systems
should support dynamic behavior and dynamic characteristics
of resources, while tolerating failures and support load balance.
Furthermore, the components of the discovery system should
communicate asynchronously and efficiently, i.e., avoid high
throughput in communication. Asynchronous querying gives
freedom and autonomy to the peers or enables discovery compo-
nents to have independent control over their data and behavior
regardless of the global system structure, which increase the
level of system decentralization. In other words, we can mea-
sure the system scalability based on the extent of its distance
from a fully centralized system.

When system size increases, resource discovery must enhance
resource utilization by providing support to make an efficient use
of the increasing available resources, while avoiding overhead. It
must perform load balancing based on resource demands while
it avoids excessive communication overhead in terms of latency,
query workload per each node, memory access, synchronization

and also traffic congestion on the communication routes within
the system. We must also take into account that some amount of
synchronization and message transaction are potentially required
to maintain the discovery system (e.g., recovering from failure,
handling departure of the nodes or arrival of new nodes)

The problem of scalability comes from different sources. For
example, communication between a large number of resources
will increase communication overhead, latency, jitter and causes
packet loss, which results in a scalability problem. Some other
significant sources are memory accesses, synchronization, and
signaling. Frequent remote memory accesses, because of data
dependencies or memory constraints, increase memory access
latency. Data or state synchronization generates communica-
tion traffic, and finally signaling overhead of communication
protocols (state maintenance) has scalability concerns. In a scal-
able system, it is expected that the system performance (e.g.,
in aspects like discovery latency or overhead regarding storage,
communication, and computational load) is independent of sys-
tem size and the resource discovery scales with increased system
resources. We can evaluate the scalability of the discovery sys-
tem by assessing the impact of changing the parameters of the
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computing environment such as network size in the aforemen-
tioned scalability issues. Table 8 provides some examples of the
evaluation of scalability methods in current resource discovery
literature.

5.3. Reliability

Reliability is one of the major concern for resource discov-
ery particularly in a HPC environment, which requires reliable,
fast execution of the tasks on computing resources. We can
distinguish between different types of reliability for resource
discovery concerning the following aspects:

Accuracy (also known as Correctness): It concerns the ac-
curate description and representation of queries and resources.
In other words, accuracy is how efficiently the query/resource
description model of the resource discovery protocol represents
the features and complexities of the real world applications and
hardware. For example, a simple flat attribute-based resource
description model is not able to precisely demonstrate the char-
acteristics and behavior of the hardware processing components
such as memory hierarchy, manycore architecture and intercon-
nection networks in a large-scale HPC environment. Thus, the
resulting resource discovery approach might not be reliable in
such environment. Additionally, in another example, providing
a query description model that only supports exact match, sin-
gle resource querying, would not able to satisfy the resource
requirements of a parallel multi-threaded application, which
simultaneously needs to discover a group of connected hetero-
geneous resources with particular QoS communication values
along each connected edge. In fact, the accuracy evaluation
of the query/resource description model is part of the resource
discovery assessment, which partially specifies the reliability of
the discovery.

Reliability also concerns an accurate result of resource dis-
covery procedure (i.e., returning results that precisely meet the
requirements of the resource requester). It means that the discov-
ered resources must carefully satisfy all of the query conditions.
In this way, the success rate and hit rate are two important crite-
ria for evaluating the reliability of discovery approaches. These
metrics, as well as cost per query and cost per hit, can also be
conducted to assess the system efficiency [258, 302–307]. A
query is considered to be successful when at least one existing
resource, matching the query, is detected. We note that a re-
source discovery solution is known to be deterministic if any
query with an empty result can assure that even one resource
matching that query is not existing in the whole system. Thus
we can conclude that a deterministic resource discovery process
provides reliability at least in terms of accuracy and success rate.
Similarly, the hit rate (i.e., recall rate, success rate) measures
the percentage of successfully discovered resources out of all
matching ones (see Equation 1).

Hit Rate = 100 ×
#Hits or #Discovered Resources

#Matching Resources
(1)

Dynamicity and Fault Tolerance: Reliability must cover
the dynamicity issues. The resource dynamicity means that any

node/resource in the system can join, leave or fail at any time
(i.e., dynamicity in terms of topology change as well as resource
life-cycle) and also it can change its characteristics (i.e., dynam-
icity in resource conditions and availability) [308, 309]. Thus,
resource discovery performance must be evaluated using differ-
ent configurations and dynamicity parameters (such as churn
rate which is the percentage of nodes/resources in a given time
frame that fails, leaves or joins the system) for the environment.
In fact, in an unreliable system, it might be possible for a re-
quester to get a resource discovery result containing information
about a resource/node that already has left the network.

Resource discovery solutions must have mechanisms to deal
with failures. These come from different sources that are mostly
related to centralized discovery architectures (i.e., single point
of failure and bottlenecks), dynamicity issues (i.e., dynamic
attributes, node/resource joins, leaves and failures) and churn
conditions. Tolerance to failures and churn is expected to be
an essential characteristic of discovery systems particularly in
very high dynamic environments containing a large number
of non-dedicated resources. Similar to the resource discovery
evaluation (in terms of supporting dynamicity), the discovery
system must be evaluated for different configurations range from
very stable to very volatile environments to prove the system
toleration in different levels of churn that are to be expected from
non-dedicated resources [310, 311]. There are several research
works in the current literature [312–314], which analyze the
impact of churn on the discovery performance. As examples of
these works, [315, 316] concludes that the DHT based discovery
solutions cannot efficiently cope with high churn rates. Rather,
they may generate some non-tolerated failures like unexpected
time-outs (caused by a finger pointing to a departed node) or
lookup failures (caused by nodes that temporarily point to the
wrong successor during churn) [317]. ECHO is a recent work
which copes with DHT churn problems through implementing a
tree-based index structure on top of DHT overlays [103].

Resource Reservation and QoS: Resource reservation ca-
pability is required for resource providers to reserve resources
for particular applications (like multimedia applications). This
means that resources are only freed when their associated pro-
cesses are done. In other words, resource reservation ensures
that the resources required are available for the processes upon
the need.

Validity: Each resource can have an expiration time when
after a given period of time, the resource becomes unavailable.
It might happen that the discovery results contain an invalid
resource which has already been expired.

5.4. Flexibility

Flexibility refers to the ability of the discovery system to ex-
press the capacity of resources and query requirements, both
provided and sought, in a form that is convenient for the resource
discovery users. The discovery mechanism must allow querying
with very specific and detailed conditions (i.e., complex query-
ing) as well as loose ones (general querying). Here, we elaborate
the most important querying functionalities, which represent
various aspect of flexibility for resource discovery solutions.
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Table 8: Some examples of the evaluation of scalability methods in other resource discovery research works (RD: Resource Discovery, ET: Evaluation Tools, PL:
Planet Lab, BM: Berkeley Millennium, IF: Iamnitchi & Foster, SG: StarGrid, MT: MatchTree, OS: OntoSum, NA: Not Available).

RD Measured Criterias Changing Parameters Scalability Evaluation Results ET

G
an

gl
ia

[4
5] Performance overheads , average band-

width consumption per node for monitor-
ing in a single cluster, total bandwidth for
aggregating data from a set of clusters

The number of nodes within a cluster and
the number of sites being federated

Linear scaling in packet rates, Linear scaling in local-area, Bandwidth con-
sumed as a function of cluster size

B
M

,P
L

O
S

[1
92

] The metric of recall rate, which is de-
fined as the number of results returned
divided by the number of results actually
available in the network

Number of nodes in the network OntoSum’s recall decreases less with the increase in network size

N
A

M
T

[4
8]

Query response time, Bandwidth con-
sumption, Query completeness

Query Types (easy and difficult queries) A hierarchical result aggregation provides balanced processing overheads
among resources with scalability. Several heuristics are proposed to improve
the query response time and to decrease overall network overheads, and they
are evaluated through large-scale simulations. It doesn’t present any direct
evaluation method to evaluate the scalability

PL
,O

ve
rS

im

SG
[3

00
] Throughput and query response time,

Throughput is the average number of
queries processed by the resource discov-
ery component per second

The size of the Grid, number of nodes,
number of concurrent requesters

The results prove the scalability for the limited size Grids

N
A

IF
[3

01
] Response time as the number of hops tra-

versed for answering a request, success
rate, which is the percentage of success-
ful queries considering the dropped re-
quests because of dead ends or exceeded
TTL

The number and the frequency of shared
resources/nodes, Different values of
TTL, Under different sharing and usage
policies (different number of existed re-
sources for each particular resource type)

Evaluation on the top of the proposed resource discovery architecture shows
that the relative performance of the different forwarding algorithms considered
is independent of the average resource frequency. The resource discovery per-
formance is correlated to the sharing characteristics.

Te
st

be
d

Employing these significant querying features enriches the re-
source discovery module to be more powerful and applicable to
fulfill the requirements of various applications, configurations,
and computing environments.

Multi-Dimensional and Range Querying is the capability
of the discovery system to process queries containing multiple
attributes either dynamic or static in specific ranges of values.
The discovery results must satisfy every one of the conditions
for each particular attribute. This would be more complicated
especially when each single attribute is required to be qualified
within a specific range of values. Since the resource contentions
along multiple dimensions might happen in the environments
with the uncoordinated analogous queries, the problem of multi-
dimensional range-querying is known to be a challenging issue.
Also, the multidimensional querying will probably reduce the
rate of resource matching, while increasing query latency and
bandwidth consumption.

The impact of multi-dimensional range-querying can be eval-
uated by using evaluation factors such as Failed Task Ratio
(F-Ratio) and Throughput Ratio (T-Ratio) [318] which directly
reflect the rate of resource matching for any resource discovery
protocol. F-Ratio is the ratio of the of the number of failed
(unsuccessful) tasks (i.e., the tasks that cannot discover any
qualified resources) to the total number of generated tasks in
a particular time period. T-Ratio also refers to the ratio of the
number of completed (executed) tasks to the total number of
generated tasks within a specific time period.

In the current literature, there are several resource discov-
ery solutions that support multi-dimensional, range and multi-
dimensional-range querying through leveraging several tech-
niques. As examples of these approaches we can mention CAN-
based protocols (e.g., CAN [61, 319, 320], RT-CAN [321], PID-
CAN [322]), MAAN [323], Mercury [66, 324], Armada [325],
Murk [326], Skip-Tree [327], SWORD [328], Node-Wiz [108]
and MatchTree [48]. Moreover, a comprehensive survey
on multi-dimensional methods and techniques can be found

in [329].

Resource Graph Discovery is the capability to discover a
graph of resources considering both individual characteristics
and interconnecting properties of resources. For example, in
order to allocate resources for the threads in an application
graph, we must consider the communication conditions and limi-
tations among the application segments. Therefore, the classical
approaches of resource discovery, which are mostly relied on
finding resources according to the individual resource charac-
teristics cannot be efficient. In fact, resource graph discovery is
the process to locate and select the best possible matched graph
of resources in the system where all the edges and vertexes can
satisfy the query conditions.

Aggregate Querying generally relies on tree-structures to
aggregate and combine results from a large number of nodes
in a hierarchy. The typical examples of aggregation queries
are Average, Median, Count, Sum, Maximum, Minimum and
Top-K [330–334].

Nearest Neighbor Querying (or k Nearest Neighbor Query -
kNNQ) means that for each given query, the discovery system
must be able to return the k-Array = {r1, r2, .., rk} of results, in
which ri is the i-th nearest qualified resource of the requester. In
other words, the resource discovery provides the list of discov-
ered resources considering the priority of the closer neighbors.

Exact Matching is one of the general search functionalities
which can be supported in most of the resource discovery sys-
tems. However, structured overlays such as distributed hash
tables, provide better support for exact matching, in comparison
to the other systems, through forwarding the query to the node
which values of its keys precisely match the query’s require-
ments. In this kind of querying, typically, the query looking for
“the resource whose key is K,” due to the overlay mechanisms
will be forwarded to the peer which is responsible for the address
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hash(K). Thus, the querying operation results in a forwarding
operation, and its efficiency would be directly dependent on the
forwarding efficiency on the overlay.

Partial Matching and Keyword Search, are challenging for
structured discovery systems. In many querying cases, for a
given exact matching query, the results might be empty while in
the system, there still exist resources that can partially meet the
query conditions. i.e., for most applications, even the partially
matched results (depending on their matching degrees) can be
acceptable and provide benefits to requesters.

In keyword searching, users ask for any resource contain-
ing a given set of keywords advertised in (or extracted from)
its meta-data or its resource description. Structured overlays
such as pure DHT based discovery systems (e.g., CAN, Chord
and Pastry) have addressed several of the issues related to the
reliability and scalability that plagued the traditional P2P over-
lays (e.g., Napster and Gnutella). However, the advantageous
functionalities such as keyword searching and partial matching
presented in Napster and Gnutella are missing in DHTs that aim
to replace them [335]. On the contrary, in unstructured systems
like GIA [336], these types of querying are easily supported, ba-
sically because indices are mostly local and for a query visiting
a peer, it would be easy to lookup the index table for a resource
having a set of required keywords.

In order to support keyword search in structured systems, there
are some typical approaches such as Inverted Indices [309, 337]
and Bloom Filters [305]. The first method consists in the cre-
ation of inverted indices where, for each keyword k, the inverted
index maintains the pageranks. The pagerank value specifies the
priority of a resource for a particular keyword with regards to
other resources, i.e., it is used to order indices at any resource.
Besides, the inverted index stores the pointers to all of the re-
sources/nodes in the system which announce that keyword in
their descriptions. Thus, a potential approach is to record the
inverted index for the keyword k at the node which is responsible
for address hash(k). The underlying mechanism to answer a key-
word query, containing a set of keywords K= {k1, r2, .., kn}, in
most of the optimized DHT-based discovery systems [338] such
as Kademilia [339–341], includes two steps, where in the first
step all inverted indices relative to each keyword ki, {i = 1, ..., n}
will be retrieved, and in the last step, these indices will be inter-
sected to achieve a set of resources that contain all the keywords
in their resource description or meta-data. The inverted indices
guarantee to provide optimal hit rate, but they potentially can
generate a huge amount of network overhead particularly when
a large number of resources present a required keyword in com-
mon [342]. This happens because the inverted indices retrieved
have to be sent to a single node in the network, which is respon-
sible to perform intersection.

Bloom Filters (BFs) [9, 235, 343, 344] are another solution to
perform keyword searching in structured systems. A bloom filter
can be defined as a hash-based data structure which summarizes
membership in a set. Thus, for the purpose of intersection
between the keyword sets of the individual resources/peers in
the system, it is possible to transfer a BF of a set instead of
sending the set itself. This significantly reduces the amount of

communication required for supporting keyword searching in
the system.

Other than Inverted Indices and Bloom Filter, there are some
other well-known supportive techniques such as replication, par-
titioning, caching, ranking and incremental results [335], which
facilitate performing the keyword searching on top of structured
overlays. Several works [305, 314] provide surveys on the vari-
ous aspects of the search methods containing keyword lookup,
range queries, multi-attribute queries and aggregation queries.

5.5. Heterogeneity
The heterogeneity of a resource discovery solution can be

evaluated along the following different aspects:
Various Administration Domains: The peers and resources

can potentially belong to different underlying administrative
domains and sub domains, particularly in large-scale, geographi-
cally distributed computing environments (e.g., Grid). Evalua-
tion of resource discovery approaches on top of the real test-bed
environments such as PlanetLab and OneLab might be a proper
option to evaluate heterogeneity in terms of various administra-
tion domains. PlanetLab is a global research network consisting
hundreds of nodes, geographically distributed in different sites
belonging to different academic institutions and industrial re-
search labs.

Various Hardware, Software, and Infrastructures: The
resource discovery approach can be adapted to work simultane-
ously in different computing environments with various types of
resources in terms of hardware (i.e., various hardware infrastruc-
tures) and software platforms (i.e., heterogeneity of the runtime
environments, network protocols, operating systems, different
data representations, data models, data structures and data ac-
cessing policies). In fact, resource discovery can be evaluated in
the presence of heterogeneous computing cores (i.e., heterogene-
ity of the resources in a cluster or even inside the same system
and chip, multicore and manycore processors, CPU, GPU, Field
Programmable Gate Array (FPGA), Cell Broadband Engine
(Cell BE), GPUs mixed with CPUs), heterogeneous hardware
implementations (i.e., various architectures and memory hier-
archies), heterogeneous Network on Chip (NoC) latencies (i.e.,
various networks and interconnections, heterogeneity on the In-
ternet). As an example, the resource discovery is required to
find heterogeneous resources for the purpose of code adaptation
in HPC and cluster computing through adapting the machine
code on the fly to different hardware platforms and operating
systems, which is one of the most difficult scenarios considering
heterogeneity.

Various Applications: A resource discovery approach can be
created for different purposes. Thus, due to the resource discov-
ery objectives, it can be used for different type of users, system
components or applications. For example, a resource discovery
protocol which is designed for the purpose of distributing task
execution and task migration in computing environments such
as Grid, Cloud or HPC must provide the requirements for hetero-
geneous applications such as HPC and Real-Time applications.
HPC applications have to make use of the vast amount of paral-
lel resources. This requires that the HPC application itself can
exploit as mush as concurrency as possible. In other words, HPC
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Table 9: Summary of comparison between some of the well-known resource discovery approaches for different evaluation factors.
Approach Resource Description Efficiency Scalability

SWORD [328,
345–347]

Native SWORD XML syntax or a Condor ClassAd. The load balancing mechanism in SWORD is less efficient in
an environment with a non-uniform distribution of peer ranges.
SWORD is a DHT-base approach, and it uses multiple over lays.

++

Node-Wiz [108,
109]

It uses a relational model and standard SQL query processing in
Node-Wiz-R.

Load balanced approach. Supports clustering and self-
organization of the overlay. Uses single distributed indexing mech-
anism.

++

MDS-4 [43, 44] It uses an extensible resource specification language based on Web
Services Resource Framework.

Uses LDAP to create the overlay. Its overlay is based on GIIS and
GRIS.

++

MatchTree [48] Leverages Condor’s condor-startd daemon which provides summa-
rized system monitoring metrics while it provides resource infor-
mation in a ClassAd format for matchmaking. It is developed on
top of Brunet P2P overlay.

Reduces query response times through redundant query topologies,
dynamic timeout policies, and sub-region queries. Leverages a
self-organizing recursive-partitioning multicast tree for query dis-
tribution and result aggregation. Balanced processing overheads
among resources.

+++

CycloidGrid [50] A set of attributes describes each resource in the system. These
attributes are CPU speed, the amount of RAM, available hard disk
size, operating system, and processor model. A decision tree (DT)
does the classification of resource attributes in this architecture

Improves the response time of user’s requests. Distributes the load
between peers based on QoS constraints of requests, round trip
time (RTT), and the current load of resources.

++

OntoSum [192] Organizes a Grid network by a semantically linked overlay rep-
resenting the semantic relationships between Grid participants.
Proposes a lightweight indexing summarization scheme based on
Triple Filter which is an extension of the classical Bloom Filter
data structure.

Uses a semantics-aware topology construction method which sig-
nificantly improves the discovery efficiency in Grids through prop-
agating the discovery requests only between semantically related
nodes. Provides the ability to locate semantically related results.
In OntoSum, Grid nodes automatically organize themselves based
on their semantic properties to form a semantically-linked overlay
network.

+++

applications are highly concerned with scalability constraints
to support high degrees of concurrency [348]. But, Real-Time
applications are more concerned with timing issues. They are
not aiming to increase the level of parallelization. Rather, they
are specifically interested in handling their timing constraints
which bear a resemblance to the synchronization estimation (i.e.,
execution timing) in distributed applications. In other words, by
exploiting the timing constraints applicable in real-time scenar-
ios, the distributed synchronization behavior can be improved
further.

6. Comparison

As we discussed in previous sections, there are a set of es-
sential functionalities, features, and performance indicators for
resource discovery solutions to meet all the major requirements
of different applications in various computing environments.
In this way, we have elaborated the most significant resource
discovery evaluation factors and criteria concerning Scalability,
Efficiency, Reliability, Flexibility, and Heterogeneity. In this
section, we select three major groups (in terms of popularity) of
resource discovery solutions for distributed computing environ-
ments: Grid-based (e.g., MDS-4, OntoSum), P2P-based (e.g.,
SWORD, MatchTree) and Hybrid-Approaches (e.g., NodeWiz,
CycloidGrid).

Moreover, we choose some of the well-known approaches as
representative of each group, and we compare them based on
the evaluation factors that are discussed in the previous sections.
Table 9, 10 and 11 provide a summary of comparison between
the aforementioned resource discovery solutions considering the
qualitative assessment through different evaluation factors.

As shown in Table 9, Grid and P2P based approaches (such as
OntoSum and MatchTree) provide better scalability compared
to Hybrid approaches. Both OntoSum and MatchTree are de-
centralized solutions. As we discussed previously, decentralized
approaches naturally have potential to provide a high level of

scalability. However, the amount of communications required
for decentralized discovery may have an impact on the scala-
bility. Of course, there are also techniques in the literature, as
we discussed before in Section 4.3, for reducing the discovery
communication overhead. In this way, OntoSum decreases the
discovery cost by propagating the discovery requests only be-
tween semantically related nodes, meaning that only a subset of
nodes is explored instead of all nodes. MatchTree also decreases
the discovery cost by applying a mixture of query termination
(e.g., dynamic timeout policies), query partitioning (e.g., sub-
queries and multicasting on sub-regions) and query guidance
techniques (e.g., dynamic detection of redundant queries).

From Table 10, we see that P2P based approaches such as
SWORD and MachTree are the most flexible resource discovery
solutions among those analyzed. But their capability to deal with
the heterogeneity (of resources) is lower than that of Grid and
Hybrid approaches. SWORD and MachTree support complex
querying including multi-attribute matching, range queries, re-
source graph discovery and also string/regular-expression match-
ing. These features increase the flexibility of querying, enabling
to perform several different types of querying. However, for
both approaches, the level of detailed conditions, that can be
expressed for each query, is low. In fact, they only support
task-level querying which is quite coarse-grained mechanism
for dealing with the heterogeneity of resources in computing
environments.

Furthermore, in Table 11, it can be seen that P2P and Hybrid
based methods enable more sophisticated features and function-
alities compared to Grid-based solutions. The reason is that both
P2P and Hybrid discovery approaches can inherit some natural
features of P2P strategies (such as load balance, fault tolerance,
and self-organization). This enriches P2P based approaches in
terms of features and functionalities compared to non-P2P based
approaches.
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Table 10: Summary of comparison between some of the well-known resource discovery approaches for different evaluation factors.
Approach Reliability Flexibility Heterogeneity

SWORD [328,
345–347]

Dynamicity in terms of Dynamic Attributes and Dynamic Topol-
ogy is supported.

Supported in terms of Range Query, Multi-Dimensional Querying
(using multi-query approach), Aggregate Query(Resource Graph
Discovery) and Nearest Neighbor Querying

++

Node-Wiz [108,
109]

Dynamicity in terms of Dynamic Attributes and Dynamic Topol-
ogy is supported. Quality of Service is supported.

Supported in terms of Range Query and Multi-Dimensional Query-
ing

++

MDS-4 [43, 44] Resource Reservation is supported. Fault Tolerance is supported.
Dynamicity in terms of Dynamic Attributes and Dynamic Topol-
ogy is supported. Quality of Service is supported.

Not Supported ++

MatchTree [48] Guarantees query completeness. Fault Tolerance for the failures
such as node churn, internal node failure, and consecutive packet
drops is supported. Dynamicity in term of adding a new attribute
is supported. Serves a different quality-of-service to users with
distinct demands.

Supports complex querying including multi-attribute matching,
range queries, string and regular expression matching

+

CycloidGrid [50] Quality of Service is supported. Not Supported +++

OntoSum [192] Supports accuracy in term of hit rate (or recall rate). Supports dy-
namicity in terms of probability to issue a query, probability to
leave the system and the probability of new nodes with new re-
sources joining the system.

Supported in term of neighbor discovery query ++

Table 11: Comparison between some of the well-known resource discovery approaches for different evaluation factors.
Functionalities SWORD Node-Wiz MDS-4 MatchTree CycloidGrid OntoSum

Load Balance 3 3 3

Fault Tolerance 3 3 3

Self-Organization 3 3 3 3

Range Query 3 3 3

Multi-Dimensional Query 3 3 3

Graph Discovery 3

Nearest Neighbor Query 3 3

Resource Reservation 3 3

Semantic-Awareness 3

Proximity-Awareness 3

7. Conclusion

Resource discovery is one of the most significant challeng-
ing issues, particularly in large-scale distributed environments,
which have already become mainstream platforms in academia
and industry. It has a large variety of applications ranging from
web-based resource discovery to job/task execution in high-
performance computing clusters, while it can be implemented
on top of different computing environments. Thus, due to the
objectives and the purposes of designing a resource discovery
approach, it can bee seen through a wide range of concepts,
methodologies, design and evaluation aspects. In this paper,
we have discussed resource discovery solutions for large-scale
distributed environments, with a particular focus on the design
aspects. Accordingly, we have categorized all of these aspects in
three classes: underlying aspects, design aspects, and evaluation
aspects.

In underlying aspects, we have investigated and reviewed the
current state of resource discovery protocols from the perspective
of the structure. We highlighted that the overall characteristics of
computing environments (e.g., Grid, Cloud, HPC, HTC, Cluster,
etc.) have a large impact on most of the design and quality
aspects (e.g., in terms of, objectives, methodology and even
performance) of any potential proposal for resource discovery for
those environments. Moreover, we presented the advantages and
disadvantages of using different distributed architectures, such
as centralized, hierarchical, decentralized and decentralized-

tree, as underlying information structures. Additionally, we have
reviewed the literature from the aspects of ontology and resource
description models and different clustering approaches.

In design aspects, we have covered most methods and tech-
niques for resource discovery in several aspects, including dis-
covery strategies, search methods, packet propagation tech-
niques, information delivery, synchronization and query termi-
nation. However, we did not cover security and summarization
aspects. This provides a clear understanding of the potential
methods, their weaknesses, and strengths. Furthermore, we have
reviewed the current works in state of the art considering those
methods.

In evaluation aspects, we have introduced a set of most im-
portant issues for resource discovery in large-scale distributed
computing systems. We have proposed that the major evalua-
tion and performance factors for resource discovery assessment
can be classified in five different aspects including scalability,
efficiency, reliability, flexibility, and heterogeneity.

We expect that the future direction of research in resource
discovery for distributed computing systems will expand upon
the following key technology trends. These trends can already
be felt incipiently in recent proposals.

-Highly scalable, decentralized resource discovery solutions
are required for future large-scale systems. Current HPCs,
Clusters, and Clouds mainly use centralized or hierarchical ap-
proaches for resource discovery. These approaches may provide
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reasonable performance for current systems. However, sticking
with such approaches for future HPCs, Clusters, and Clouds can
provide big issues in terms of efficiency. Because in future large
dimension systems it is not attainable to maintain and manage a
huge amount of information in a central place. This would be
more critical particularly for applications which need very de-
tailed information of resources (e.g., details of processing cores
and interconnects). On the other hand, dealing with dynamic-
ity of resources and the environment in such large scale future
systems using a centralized approach would be a challenging
issue.

-Manycore technology would be in the core of the future com-
puting. Accordingly, there would be a set of requirements for
resource discovery in future manycore systems which include
scalability, heterogeneity, and hierarchies. In fact, the scalability
is required to cope with the large dimensions of cores, dies, and
nodes in the system. The heterogeneity of cores, processors,
nodes, networks and interconnects is also foreseeable in future
systems. Therefore, resource discovery approaches must support
heterogeneity of resources. Furthermore, hierarchies (like Node-
Die-Core) are in the nature of future manycore systems. Thus,
it would be essential for a discovery approach to be efficiently
adapted to the hierarchical nature of such future systems. Re-
ferring to the high complexity of future manycore systems, we
can mention further discovery requirements such as adaptability,
querying flexibility, complex querying, query expressiveness,
and resource graph discovery.

-Thread-level resource discovery is desired for future systems
[297]. This can be defined as the capability of the discovery
system to deal with the query conditions in thread-level (i.e.,
resource requirements for each thread in a process). In current
literature, (P2P-based) decentralized discovery approaches are
mostly used for Grids. However, these approaches generally
work at task-level (due to the Grid nature) in which parallelism
of independent tasks is exploited, resulting in a course-grained
discovery. This makes current Grid discovery methods inade-
quate to deal with the manycore nature of future computing (in
terms of efficient satisfaction of all query constraints) [349, 350],
due to the lack of support for thread-level discovery as well as
the high resolution of future manycore systems and future paral-
lel applications. Nevertheless, Operating Systems can perform
resource allocation in instruction-level. This provides moti-
vation to go beyond the current Grids through the concept of
Distributed Operation Systems (DOSs), capable to run on future
large-scale systems. S[o]OS [295–297, 351–360], Barrelfish
[361], and MyThOS [362] are recent research projects aim-
ing to provide references for such DOSs. Resource discovery
for DOSs requires a fine-grained, thread-level (system-level)
resource discovery approach which can work in a fully decen-
tralized, self-determining and autonomous fashion.
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