505 research outputs found

    Draft Genome Sequence of Campylobacter jejuni 11168H

    Get PDF
    Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world. The reference and original sequenced strain C. jejuni NCTC11168 has low levels of motility compared to clinical isolates. Here, we describe the draft genome of the laboratory derived hypermotile variant named 11168H

    Draft Genome Sequence of Lactobacillus fermentum Strain 3872

    Get PDF
    This report describes a draft genome sequence of Lactobacillus fermentum strain 3872. The data revealed remarkable similarity to and dissimilarity with the published genome sequences of other strains of the species. The absence of and variation in structures of some adhesins and the presence of an additional adhesin may reflect adaptation of the bacterium to different host systems and may contribute to specific properties of this strain as a new probiotic

    'Lactobacillus fermentum' 3872 as a potential tool for combatting 'Campylobacter jejuni' infections

    Get PDF
    Due to the global spread of multidrug resistant pathogenic bacteria, alternative approaches in combating infectious diseases are required. One such approach is the use of probiotics. Lactobacillus fermentum 3872 is a promising probiotic bacterium producing a range of antimicrobial compounds, such as hydrogen peroxide and lactic acid. In addition, previous studies involving genome sequencing and analysis of L. fermentum 3872 allowed the identification of a gene encoding a cell surface protein referred to as collagen binding protein (CBP) (not found in other strains of the species, according to the GenBank database), consisting of a C-terminal cell wall anchor domain (LPXT), multiple repeats of ‘B domains' that form stalks presenting an “A domain” required for adhesion. In this study, we found that the CBP of L. fermentum 3872 binds to collagen I present on the surface of the epithelial cells lining the gastrointestinal tract. Moreover, we found that this host receptor is also used for attachment by the major gastrointestinal pathogen, Campylobacter jejuni. Furthermore, we identified an adhesin involved in such interaction and demonstrated that both L. fermentum 3872 and its CBP can inhibit binding of this pathogen to collagen I. Combined with the observation that C. jejuni growth is affected in the acidic environment produced by L. fermentum 3872, the finding provides a good basis for further investigation of this strain as a potential tool for fighting Campylobacter infections

    Complete genome sequence of 'Campylobacter jejuni' strain G1, isolated from a patient with Guillain-Barré syndrome

    Get PDF
    Here, I report the complete genome sequence of Campylobacter jejuni strain G1, belonging to Penner serotype HS1. One remarkable feature of the genome of this isolate is the presence of four copies of Mu-like prophages, of which none are present in some other strains, including the reference strain NCTC11168

    Draft genome sequence of 'Cohnella kolymensis' B-2846

    Get PDF
    A draft genome sequence of "Cohnella kolymensis" strain B-2846 was derived using IonTorrent sequencing technology. The size of the assembly and G+C content were in agreement with those of other species of this genus. Characterization of the genome of a novel species of Cohnella will assist in bacterial systematics

    Remarkable features of mitochondrial DNA of 'Acanthamoeba polyphaga' Linc Ap-1, revealed by whole-genome sequencing

    Get PDF
    Whole-genome sequencing of Acanthamoeba polyphaga Linc Ap-1 resulted in a draft assembly of the chromosomal DNA and a complete sequence of the mitochondrial DNA (mtDNA). Despite very high sequence similarity with the mtDNA of Acanthamoeba castellanii Neff, in contrast to Acanthamoeba polyphaga Linc Ap-1, the determined DNA sequence revealed a complete absence of introns

    A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface.

    No full text
    To investigate Yersinia pathogenicity and the evolutionary divergence of the genus, the effect of pathogenic yersiniae on the model organism Caenorhabditis elegans was studied. Three strains of Yersinia pestis, including a strain lacking pMT1, caused blockage and death of C. elegans; one strain, lacking the haemin storage (hms) locus, caused no effect. Similarly, 15 strains of Yersinia enterocolitica caused no effect. Strains of Yersinia pseudotuberculosis showed different levels of pathogenicity. The majority of strains (76 %) caused no discernible effect; 5 % caused a weak infection, 9.5 % an intermediate infection, and 9.5 % a severe infection. There was no consistent relationship between serotype and severity of infection; nor was there any relationship between strains causing infection of C. elegans and those able to form a biofilm on an abiotic surface. Electron microscope and cytochemical examination of infected worms indicated that the infection phenotype is a result of biofilm formation on the head of the worm. Seven transposon mutants of Y. pseudotuberculosis strain YPIII pIB1 were completely or partially attenuated; mutated genes included genes encoding proteins involved in haemin storage and lipopolysaccharide biosynthesis. A screen of 15 defined C. elegans mutants identified four where mutation caused (complete) resistance to infection by Y. pseudotuberculosis YPIII pIB1. These mutants, srf-2, srf-3, srf-5 and the dauer pathway gene daf-1, also exhibit altered binding of lectins to the nematode surface. This suggests that biofilm formation on a biotic surface is an interactive process involving both bacterial and invertebrate control mechanisms

    Draft genome sequence of Lactobacillus plantarum 2025

    Get PDF
    A draft genome sequence of Lactobacillus plantarum 2025 was derived using Ion Torrent sequencing technology. The total size of the assembly (3.33 Mb) was in agreement with the genome sizes of other strains of this species. The data will assist in revealing the genes responsible for the specific properties of this strain

    Draft Genome Sequence of a Probiotic Strain, Lactobacillus fermentum UCO-979C.

    Get PDF
    This report describes a draft genome sequence of Lactobacillus fermentum strain UCO-979C. The reads generated by a Ion Torrent PGM were assembled into contigs, with a total size of 2.01 Mb. The data were annotated using the NCBI GenBank and RAST servers. Specific features of the genome are highlighted

    Genome-wide saturation mutagenesis of Burkholderia pseudomallei K96243 predicts essential genes and novel targets for antimicrobial development.

    Get PDF
    UNLABELLED: Burkholderia pseudomallei is the causative agent of melioidosis, an often fatal infectious disease for which there is no vaccine. B. pseudomallei is listed as a tier 1 select agent, and as current therapeutic options are limited due to its natural resistance to most antibiotics, the development of new antimicrobial therapies is imperative. To identify drug targets and better understand the complex B. pseudomallei genome, we sought a genome-wide approach to identify lethal gene targets. As B. pseudomallei has an unusually large genome spread over two chromosomes, an extensive screen was required to achieve a comprehensive analysis. Here we describe transposon-directed insertion site sequencing (TraDIS) of a library of over 10(6) transposon insertion mutants, which provides the level of genome saturation required to identify essential genes. Using this technique, we have identified a set of 505 genes that are predicted to be essential in B. pseudomallei K96243. To validate our screen, three genes predicted to be essential, pyrH, accA, and sodB, and a gene predicted to be nonessential, bpss0370, were independently investigated through the generation of conditional mutants. The conditional mutants confirmed the TraDIS predictions, showing that we have generated a list of genes predicted to be essential and demonstrating that this technique can be used to analyze complex genomes and thus be more widely applied. IMPORTANCE: Burkholderia pseudomallei is a lethal human pathogen that is considered a potential bioterrorism threat and has limited treatment options due to an unusually high natural resistance to most antibiotics. We have identified a set of genes that are required for bacterial growth and thus are excellent candidates against which to develop potential novel antibiotics. To validate our approach, we constructed four mutants in which gene expression can be turned on and off conditionally to confirm that these genes are required for the bacteria to survive
    • 

    corecore