151 research outputs found

    Somatic mutations and single-cell transcriptomes reveal the root of malignant rhabdoid tumours

    Get PDF
    Malignant rhabdoid tumour (MRT) is an often lethal childhood cancer that, like many paediatric tumours, is thought to arise from aberrant fetal development. The embryonic root and differentiation pathways underpinning MRT are not firmly established. Here, we study the origin of MRT by combining phylogenetic analyses and single-cell mRNA studies in patient-derived organoids. Comparison of somatic mutations shared between cancer and surrounding normal tissues places MRT in a lineage with neural crest-derived Schwann cells. Single-cell mRNA readouts of MRT differentiation, which we examine by reverting the genetic driver mutation underpinning MRT, SMARCB1 loss, suggest that cells are blocked en route to differentiating into mesenchyme. Quantitative transcriptional predictions indicate that combined HDAC and mTOR inhibition mimic MRT differentiation, which we confirm experimentally. Our study defines the developmental block of MRT and reveals potential differentiation therapies

    Investigations on DNA damage and frequency of micronuclei in occupational exposure to electromagnetic fields (EMFs) emitted from video display terminals (VDTs)

    Get PDF
    The potential effect of electromagnetic fields (EMFs) emitted from video display terminals (VDTs) to elicit biological response is a major concern for the public. The software professionals are subjected to cumulative EMFs in their occupational environments. This study was undertaken to evaluate DNA damage and incidences of micronuclei in such professionals. To the best of our knowledge, the present study is the first attempt to carry out cytogenetic investigations on assessing bioeffects in personal computer users. The study subjects (n = 138) included software professionals using VDTs for more than 2 years with age, gender, socioeconomic status matched controls (n = 151). DNA damage and frequency of micronuclei were evaluated using alkaline comet assay and cytochalasin blocked micronucleus assay respectively. Overall DNA damage and incidence of micronuclei showed no significant differences between the exposed and control subjects. With exposure characteristics, such as total duration (years) and frequency of use (minutes/day) sub-groups were assessed for such parameters. Although cumulative frequency of use showed no significant changes in the DNA integrity of the classified sub-groups, the long-term users (> 10 years) showed higher induction of DNA damage and increased frequency of micronuclei and micro nucleated cells

    Single cell derived mRNA signals across human kidney tumors.

    Get PDF
    Tumor cells may share some patterns of gene expression with their cell of origin, providing clues into the differentiation state and origin of cancer. Here, we study the differentiation state and cellular origin of 1300 childhood and adult kidney tumors. Using single cell mRNA reference maps of normal tissues, we quantify reference "cellular signals" in each tumor. Quantifying global differentiation, we find that childhood tumors exhibit fetal cellular signals, replacing the presumption of "fetalness" with a quantitative measure of immaturity. By contrast, in adult cancers our assessment refutes the suggestion of dedifferentiation towards a fetal state in most cases. We find an intimate connection between developmental mesenchymal populations and childhood renal tumors. We demonstrate the diagnostic potential of our approach with a case study of a cryptic renal tumor. Our findings provide a cellular definition of human renal tumors through an approach that is broadly applicable to human cancer

    Glial Tumor Necrosis Factor Alpha (TNFα) Generates Metaplastic Inhibition of Spinal Learning

    Get PDF
    Injury-induced overexpression of tumor necrosis factor alpha (TNFα) in the spinal cord can induce chronic neuroinflammation and excitotoxicity that ultimately undermines functional recovery. Here we investigate how TNFα might also act to upset spinal function by modulating spinal plasticity. Using a model of instrumental learning in the injured spinal cord, we have previously shown that peripheral intermittent stimulation can produce a plastic change in spinal plasticity (metaplasticity), resulting in the prolonged inhibition of spinal learning. We hypothesized that spinal metaplasticity may be mediated by TNFα. We found that intermittent stimulation increased protein levels in the spinal cord. Using intrathecal pharmacological manipulations, we showed TNFα to be both necessary and sufficient for the long-term inhibition of a spinal instrumental learning task. These effects were found to be dependent on glial production of TNFα and involved downstream alterations in calcium-permeable AMPA receptors. These findings suggest a crucial role for glial TNFα in undermining spinal learning, and demonstrate the therapeutic potential of inhibiting TNFα activity to rescue and restore adaptive spinal plasticity to the injured spinal cord. TNFα modulation represents a novel therapeutic target for improving rehabilitation after spinal cord injury

    Urticaria and infections

    Get PDF
    Urticaria is a group of diseases that share a distinct skin reaction pattern. Triggering of urticaria by infections has been discussed for many years but the exact role and pathogenesis of mast cell activation by infectious processes is unclear. In spontaneous acute urticaria there is no doubt for a causal relationship to infections and all chronic urticaria must have started as acute. Whereas in physical or distinct urticaria subtypes the evidence for infections is sparse, remission of annoying spontaneous chronic urticaria has been reported after successful treatment of persistent infections. Current summarizing available studies that evaluated the course of the chronic urticaria after proven Helicobacter eradication demonstrate a statistically significant benefit compared to untreated patients or Helicobacter-negative controls without urticaria (p < 0.001). Since infections can be easily treated some diagnostic procedures should be included in the routine work-up, especially the search for Helicobacter pylori. This review will update the reader regarding the role of infections in different urticaria subtypes

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Mdm20 Stimulates PolyQ Aggregation via Inhibiting Autophagy Through Akt-Ser473 Phosphorylation

    Get PDF
    Mdm20 is an auxiliary subunit of the NatB complex, which includes Nat5, the catalytic subunit for protein N-terminal acetylation. The NatB complex catalyzes N-acetylation during de novo protein synthesis initiation; however, recent evidence from yeast suggests that NatB also affects post-translational modification of tropomyosin, which is involved in intracellular sorting of aggregated proteins. We hypothesized that an acetylation complex such as NatB may contribute to protein clearance and/or proteostasis in mammalian cells. Using a poly glutamine (polyQ) aggregation system, we examined whether the NatB complex or its components affect protein aggregation in rat primary cultured hippocampal neurons and HEK293 cells. The number of polyQ aggregates increased in Mdm20 over-expressing (OE) cells, but not in Nat5-OE cells. Conversely, in Mdm20 knockdown (KD) cells, but not in Nat5-KD cells, polyQ aggregation was significantly reduced. Although Mdm20 directly associates with Nat5, the overall cellular localization of the two proteins was slightly distinct, and Mdm20 apparently co-localized with the polyQ aggregates. Furthermore, in Mdm20-KD cells, a punctate appearance of LC3 was evident, suggesting the induction of autophagy. Consistent with this notion, phosphorylation of Akt, most notably at Ser473, was greatly reduced in Mdm20-KD cells. These results demonstrate that Mdm20, the so-called auxiliary subunit of the translation-coupled protein N-acetylation complex, contributes to protein clearance and/or aggregate formation by affecting the phosphorylation level of Akt indepenently from the function of Nat5
    corecore