118 research outputs found

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report

    Search for heavy resonances decaying into a pair of Z bosons in the ℓ + ℓ - ℓ ′ + ℓ ′ - and ℓ + ℓ - ν ν ¯ final states using 139 fb - 1 of proton–proton collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Abstract: A search for heavy resonances decaying into a pair of Z bosons leading to ℓ+ℓ-ℓ′+ℓ′- and ℓ+ℓ-νν¯ final states, where ℓ stands for either an electron or a muon, is presented. The search uses proton–proton collision data at a centre-of-mass energy of 13 TeV collected from 2015 to 2018 that corresponds to the integrated luminosity of 139 fb-1 recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Different mass ranges spanning 200 GeV to 2000 GeV for the hypothetical resonances are considered, depending on the final state and model. In the absence of a significant observed excess, the results are interpreted as upper limits on the production cross section of a spin-0 or spin-2 resonance. The upper limits for the spin-0 resonance are translated to exclusion contours in the context of Type-I and Type-II two-Higgs-doublet models, and the limits for the spin-2 resonance are used to constrain the Randall–Sundrum model with an extra dimension giving rise to spin-2 graviton excitations

    Search for squarks and gluinos in final states with one isolated lepton, jets, and missing transverse momentum at s√=13 with the ATLAS detector

    Get PDF
    We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSWand NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS andMIZS, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF andCantons of Bern andGeneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, CRC and IVADO, Canada; Beijing Municipal Science& Technology Commission, China; COST, ERC, ERDF, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex, Investissements d'Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSFNSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Goran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CCIN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NLT1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [97].The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two W bosons, the lightest neutralinos ((chi) over tilde (0)(1)), and quarks, are presented: the signal is characterised by the presence of a single charged lepton (e(+/-) or mu(+/-)) from a W boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb(-1) of proton-proton collision data taken at a centre-of-mass energy root s = 13 delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2 (1.4 ) are excluded at 95% confidence level for a light (chi) over tilde (0)(1).ANPCyTYerPhI, ArmeniaAustralian Research CouncilBMWFW, AustriaAustrian Science Fund (FWF)Azerbaijan National Academy of Sciences (ANAS)SSTC, BelarusConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Natural Sciences and Engineering Research Council of Canada (NSERC)NRC, CanadaCanada Foundation for InnovationCERNANID, ChileChinese Academy of SciencesMinistry of Science and Technology, ChinaNational Natural Science Foundation of China (NSFC)Departamento Administrativo de Ciencia, Tecnologia e Innovacion ColcienciasMinistry of Education, Youth & Sports - Czech Republic Czech Republic GovernmentCzech Republic GovernmentDNRF, DenmarkDanish Natural Science Research CouncilCentre National de la Recherche Scientifique (CNRS)CEA-DRF/IRFU, FranceSRNSFG, GeorgiaFederal Ministry of Education & Research (BMBF)HGF, GermanyMax Planck SocietyGreek Ministry of Development-GSRTRGC, ChinaHong Kong SAR, ChinaIsrael Science FoundationBenoziyo Center, IsraelIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of ScienceCNRST, MoroccoNetherlands Organization for Scientific Research (NWO) Netherlands GovernmentRCN, NorwayMinistry of Science and Higher Education, PolandNCN, PolandPortuguese Foundation for Science and Technology European CommissionMNE/IFA, RomaniaJINRRussian FederationNRC KI, Russian FederationMinistry of Education, Science & Technological Development, SerbiaMSSR, SlovakiaSlovenian Research Agency - SloveniaMIZS, SloveniaDST/NRF, South AfricaSpanish GovernmentSRC, SwedenWallenberg Foundation, SwedenSERI, SwitzerlandSwiss National Science Foundation (SNSF)Cantons of Bern andGeneva, SwitzerlandMinistry of Science and Technology, TaiwanMinistry of Energy & Natural Resources - TurkeyUK Research & Innovation (UKRI) Science & Technology Facilities Council (STFC)United States Department of Energy (DOE)National Science Foundation (NSF)BCKDF, CanadaCANARIE, CanadaCompute Canada, CanadaCRC, CanadaIVADO, CanadaBeijing Municipal Science & Technology CommissionCOST, European UnionEuropean Research Council (ERC)ERDF, European UnionHorizon 2020 and Marie Sklodowska-Curie Actions, European UnionFrench National Research Agency (ANR)German Research Foundation (DFG)Alexander von Humboldt FoundationHerakleitos - EU-ESFThales GroupGreek NSRF, GreeceBSFNSF, IsraelGerman-Israeli Foundation for Scientific Research and DevelopmentLa Caixa Banking Foundation, SpainCERCA Programme Generalitat de Catalunya, SpainPROMETEO and GenT Programmes Generalitat Valenciana, SpainGoran Gustafssons Stiftelse, SwedenRoyal Society of LondonLeverhulme Trus

    Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb−1 of Pb+Pb data with the ATLAS detector

    Get PDF
    This paper describes a measurement of light-by-light scattering based on Pb+Pb collision data recorded by the ATLAS experiment during Run 2 of the LHC. The study uses 2.2 nb−1 of integrated luminosity collected in 2015 and 2018 at sNN = 5.02 TeV. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy ETγ> 2.5 GeV, pseudorapidity |ηγ| < 2.37, diphoton invariant mass mγγ> 5 GeV, and with small diphoton transverse momentum and diphoton acoplanarity. The integrated and differential fiducial cross sections are measured and compared with theoretical predictions. The diphoton invariant mass distribution is used to set limits on the production of axion-like particles. This result provides the most stringent limits to date on axion-like particle production for masses in the range 6–100 GeV. Cross sections above 2 to 70 nb are excluded at the 95% CL in that mass interval. [Figure not available: see fulltext.] © 2021, The Author(s)

    Search for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with missing transverse momentum in s√=13 TeV pp collisions with the ATLAS detector

    Get PDF
    aJUTS: s We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; MINECO, Spain AND CERCA Programme Generalitat de Catalunya.A search for new phenomena in final states containing an or pair, jets, and large missing transverse momentum is presented. This analysis makes use of proton-proton collision data with an integrated luminosity of , collected during 2015 and 2016 at a centre-of-mass energy with the ATLAS detector at the Large Hadron Collider. The search targets the pair production of supersymmetric coloured particles (squarks or gluinos) and their decays into final states containing an or pair and the lightest neutralino () via one of two next-to-lightest neutralino () decay mechanisms: , where the Z boson decays leptonically leading to a peak in the dilepton invariant mass distribution around the Z boson mass; and with no intermediate resonance, yielding a kinematic endpoint in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted using simplified models, and exclude gluinos and squarks with masses as large as 1.85 and 1.3 at 95% confidence level, respectively

    Differential cross-section measurements for the electroweak production of dijets in association with a Z boson in proton–proton collisions at ATLAS

    Get PDF
    Differential cross-section measurements are presented for the electroweak production of two jets in association with a Z boson. These measurements are sensitive to the vector-boson fusion production mechanism and provide a fundamental test of the gauge structure of the Standard Model. The analysis is performed using proton–proton collision data collected by ATLAS at s=13TeVs=13 TeV\sqrt{s}=13\ \hbox {TeV} and with an integrated luminosity of 139fb-1139 fb1139\ \hbox {fb}^{-1}. The differential cross-sections are measured in the Z→ℓ+ℓ-Z+Z\rightarrow \ell ^+\ell ^- decay channel (ℓ=e,μ=e,μ\ell =e,\mu ) as a function of four observables: the dijet invariant mass, the rapidity interval spanned by the two jets, the signed azimuthal angle between the two jets, and the transverse momentum of the dilepton pair. The data are corrected for the effects of detector inefficiency and resolution and are sufficiently precise to distinguish between different state-of-the-art theoretical predictions calculated using Powheg+Pythia8, Herwig7+Vbfnlo and Sherpa 2.2. The differential cross-sections are used to search for anomalous weak-boson self-interactions using a dimension-six effective field theory. The measurement of the signed azimuthal angle between the two jets is found to be particularly sensitive to the interference between the Standard Model and dimension-six scattering amplitudes and provides a direct test of charge-conjugation and parity invariance in the weak-boson self-interactions

    Search for bottom-squark pair production in pp collision events at root s =13 TeV with hadronically decaying τ -leptons, b -jets, and missing transverse momentum using the ATLAS detector

    Get PDF
    A search for pair production of bottom squarks in events with hadronically decaying t-leptons, b-tagged jets, and large missing transverse momentum is presented. The analyzed dataset is based on proton-proton collisions at root s = 13 TeV delivered by the Large Hadron Collider and recorded by the ATLAS detector from 2015 to 2018, and corresponds to an integrated luminosity of 139 fb(-1). The observed data are compatible with the expected Standard Model background. Results are interpreted in a simplified model where each bottom squark is assumed to decay into the second-lightest neutralino (chi) over tilde (0)(2) and a bottom quark, with (chi) over tilde (0)(2) decaying into a Higgs boson and the lightest neutralino (chi) over tilde1(0). The search focuses on final states where at least one Higgs boson decays into a pair of hadronically decaying t-leptons. This allows the acceptance and thus the sensitivity to be significantly improved relative to the previous results at low masses of the (chi) over tilde (0)(2), where bottom-squark masses up to 850 GeV are excluded at the 95% confidence level, assuming a mass difference of 130 GeV between (chi) over tilde (0)(2) and (chi) over tilde (0)(1). Model-independent upper limits are also set on the cross section of processes beyond the Standard Model

    Measurement of b -quark fragmentation properties in jets using the decay B ± → J/ψK ± in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Abstract: The fragmentation properties of jets containing b-hadrons are studied using charged B mesons in 139 fb−1 of pp collisions at s = 13 TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The B mesons are reconstructed using the decay of B± into J/ψK±, with the J/ψ decaying into a pair of muons. Jets are reconstructed using the anti-kt algorithm with radius parameter R = 0.4. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed B hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets

    Search for Higgs boson pair production in the WW(*)WW(*) decay channel using ATLAS data recorded at s√s = 13 TeV

    Get PDF
    A search for a pair of neutral, scalar bosons with each decaying into two W bosons is presented using 36.1 fb−1 of proton-proton collision data at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. This search uses three production models: non-resonant and resonant Higgs boson pair production and resonant production of a pair of heavy scalar particles. Three final states, classified by the number of leptons, are analysed: two same-sign leptons, three leptons, and four leptons. No significant excess over the expected Standard Model backgrounds is observed. An observed (expected) 95% confidence-level upper limit of 160 (120) times the Standard Model prediction of non-resonant Higgs boson pair production cross-section is set from a combined analysis of the three final states. Upper limits are set on the production cross-section times branching ratio of a heavy scalar X decaying into a Higgs boson pair in the mass range of 260 GeV ≤ mX ≤ 500 GeV and the observed (expected) limits range from 9.3 (10) pb to 2.8 (2.6) pb. Upper limits are set on the production cross-section times branching ratio of a heavy scalar X decaying into a pair of heavy scalars S for mass ranges of 280 GeV ≤ mX ≤ 340 GeV and 135 GeV ≤ mS ≤ 165 GeV and the observed (expected) limits range from 2.5 (2.5) pb to 0.16 (0.17) pb.ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; COST, European Union; ERC, European Union; ERDF, European Union; Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d' Avenir Labex, ANR, France; Investissements d' Avenir Idex, ANR, France; DFG, Germany; AvH Foundation, Germany; Aristeia programme - EU-ESF, Greece; Greek NSRF, Greece; BSF-NSF, Israel; GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; Herakleitos programme - EU-ESF, Greece; Thales programme - EU-ESF, Greece; Canton of Geneva, SwitzerlandOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Measurements of Higgs bosons decaying to bottom quarks from vector boson fusion production with the ATLAS experiment at s=13TeV

    Get PDF
    The paper presents a measurement of the Standard Model Higgs Boson decaying to b-quark pairs in the vector boson fusion (VBF) production mode. A sample corresponding to 126 fb-1fb1\hbox {fb}^{-1} of s=13TeVs=13TeV\sqrt{s} = 13\,\text {TeV} proton–proton collision data, collected with the ATLAS experiment at the Large Hadron Collider, is analyzed utilizing an adversarial neural network for event classification. The signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model for VBF Higgs production, is measured to be 0.95-0.36+0.380.950.36+0.380.95^{+0.38}_{-0.36} , corresponding to an observed (expected) significance of 2.6 (2.8) standard deviations from the background only hypothesis. The results are additionally combined with an analysis of Higgs bosons decaying to b-quarks, produced via VBF in association with a photon
    corecore