17 research outputs found

    CIGB-300, a synthetic peptide-based drug that targets the CK2 phosphoaceptor domain. Translational and clinical research

    Get PDF
    CK2 represents an oncology target scientifically validated. However, clinical research with inhibitors of the CK2-mediated phosphorylation event is still insufficient to recognize it as a clinically validated target. CIGB-300, an investigational peptide-based drug that targets the phosphoaceptor site, binds to a CK2 substrate array in vitro but mainly to B23/nucleophosmin in vivo. The CIGB-300 proapoptotic effect is preceded by its nucleolar localization, inhibition of the CK2-mediated phosphorylation on B23/nucleophosmin and nucleolar disassembly. Importantly, CIGB-300 shifted a protein array linked to apoptosis, ribosome biogenesis, cell proliferation, glycolisis, and cell motility in proteomic studies which helped to understand its mechanism of action. In the clinical ground, CIGB-300 has proved to be safe and well tolerated in a First-in-Human trial in women with cervical malignancies who also experienced signs of clinical benefit. In a second Phase 1 clinical trial in women with cervical cancer stage IB2/II, the MTD and DLT have been also identified in the clinical setting. Interestingly, in cervical tumors the B23/nucleophosmin protein levels were significantly reduced after CIGB-300 treatment at the nucleus compartment. In addition, expanded use of CIGB-300 in case studies has evidenced antitumor activity when administered as compassional option. Collectively, our data outline important clues on translational and clinical research from this novel peptide-based drug reinforcing its perspectives to treat cancer and paving the way to validate CK2 as a promising target in oncology.Fil: Perea, Silvio E.. Center for Genetic Engineering and Biotechnology; CubaFil: Baladron, Idania. Center for Genetic Engineering and Biotechnology; CubaFil: Garcia, Yanelda. Center for Genetic Engineering and Biotechnology; CubaFil: Perera, Yasser. Center for Genetic Engineering and Biotechnology; CubaFil: Lopez, Adlin. Center for Genetic Engineering and Biotechnology; CubaFil: Soriano, Jorge L.. Center for Genetic Engineering and Biotechnology; Cuba. General Hospital ‘‘Hermanos Ameijeiras’; CubaFil: Batista, Noyde. Center for Genetic Engineering and Biotechnology; Cuba. General Hospital ‘‘Hermanos Ameijeiras’; CubaFil: Palau, Aley. Center for Genetic Engineering and Biotechnology; Cuba. General Hospital ‘‘Hermanos Ameijeiras’; CubaFil: Hernández, Ignacio. Center for Genetic Engineering and Biotechnology; CubaFil: Farina, Hernán Gabriel. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garcia, Idrian. Center for Genetic Engineering and Biotechnology; CubaFil: Gonzalez, Lidia. Center for Genetic Engineering and Biotechnology; CubaFil: Gil, Jeovanis. Center for Genetic Engineering and Biotechnology; CubaFil: Rodriguez, Arielis. Center for Genetic Engineering and Biotechnology; CubaFil: Solares, Margarita. Center for Genetic Engineering and Biotechnology; CubaFil: Santana, Agueda. Center for Genetic Engineering and Biotechnology; CubaFil: Cruz, Marisol. Center for Genetic Engineering and Biotechnology; CubaFil: Lopez, Matilde. Center for Genetic Engineering and Biotechnology; CubaFil: Valenzuela, Carmen. Center for Genetic Engineering and Biotechnology; CubaFil: Reyes, Osvaldo. Center for Genetic Engineering and Biotechnology; CubaFil: López Saura, Pedro A.. Center for Genetic Engineering and Biotechnology; CubaFil: González, Carlos A.. Center for Genetic Engineering and Biotechnology; CubaFil: Diaz, Alina. Center for Genetic Engineering and Biotechnology; CubaFil: Castellanos, Lila. Center for Genetic Engineering and Biotechnology; CubaFil: Sanchez, Aniel. Center for Genetic Engineering and Biotechnology; CubaFil: Betancourt, Lazaro. Center for Genetic Engineering and Biotechnology; CubaFil: Besada, Vladimir. Center for Genetic Engineering and Biotechnology; CubaFil: González, Luis J.. Center for Genetic Engineering and Biotechnology; CubaFil: Garay, Hilda. Center for Genetic Engineering and Biotechnology; CubaFil: Gómez, Roberto. Center for Genetic Engineering and Biotechnology; CubaFil: Gomez, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Alonso, Daniel Fernando. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Perrin, Phillipe. No especifíca;Fil: Renualt, Jean Yves. No especifíca;Fil: Sigman, Hugo. No especifíca;Fil: Herrera, Luis. Center for Genetic Engineering and Biotechnology; CubaFil: Acevedo, Boris. Center for Genetic Engineering and Biotechnology; Cub

    A TREM2-activating antibody with a blood-brain barrier transport vehicle enhances microglial metabolism in Alzheimer's disease models

    Get PDF
    van Lengerich et al. developed a human TREM2 antibody with a transport vehicle (ATV) that improves brain exposure and biodistribution in mouse models. ATV:TREM2 promotes microglial energetic capacity and metabolism via mitochondrial pathways. Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD

    Calidad de las elecciones a titular del Ejecutivo en el Centro y Centro-occidente de México

    Get PDF
    Este libro, que tiene por objetivo analizar la calidad de las elecciones celebradas entre 2006 y 2011 para ocupar la titularidad del Poder Ejecutivo de las 14 entidades federativas de la República Mexicana que conforman las regiones Centro y Centro-occidente de este país, ha sido elaborado por investigadores pertenecientes a la Red Nacional de Investigación sobre la Calidad de la Democracia en México (Renicadem), la cual cuenta con un equipo de investigación en cada una de las entidades federativas del país. A su vez, esta Red constituye una de las cuatro líneas temáticas que componen la red temática del Conacyt “Sociedad civil y calidad de la democracia”. Con todo, la presente obra puede considerarse, en dos sentidos, como el resultado parcial de estudios realizados por investigadores que conforman la mencionada Renicadem. Por un lado, trata sólo de una de las varias dimensiones que esta Red ha establecido como necesarias para analizar la calidad de la democracia: la calidad electoral (otras dimensiones, que se encuentran en proceso de investigación, son calidad de vida, rendición de cuentas y Estado de derecho). También es parcial porque no abarca la totalidad de la República Mexicana, sino únicamente a las 14 entidades indicadas.UAE

    Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, an

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Forouzanfar MH, Afshin A, Alexander LT, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. LANCET. 2016;388(10053):1659-1724.Background The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57.8% (95% CI 56.6-58.8) of global deaths and 41.2% (39.8-42.8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211.8 million [192.7 million to 231.1 million] global DALYs), smoking (148.6 million [134.2 million to 163.1 million]), high fasting plasma glucose (143.1 million [125.1 million to 163.5 million]), high BMI (120.1 million [83.8 million to 158.4 million]), childhood undernutrition (113.3 million [103.9 million to 123.4 million]), ambient particulate matter (103.1 million [90.8 million to 115.1 million]), high total cholesterol (88.7 million [74.6 million to 105.7 million]), household air pollution (85.6 million [66.7 million to 106.1 million]), alcohol use (85.0 million [77.2 million to 93.0 million]), and diets high in sodium (83.0 million [49.3 million to 127.5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Copyright (C) The Author(s). Published by Elsevier Ltd

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe

    Taller De Creatividad-HU193-201402

    No full text
    En el marco del Área de Humanidades el curso Taller de Creatividad tiene como propósito formar en el estudiante la competencia de pensamiento creativo para la solución de problemas reales a través de la construcción de proyectos. Esta competencia se expresa en la actuación idónea del estudiante orientada al diseño de experiencias y productos novedosos que son valiosos para el contexto cultural local regional o global. Para lograr dicho fin se asume un estilo específico del pensamiento creativo denominado pensamiento de diseño que permite organizar de manera flexible un conjunto de métodos estrategias y técnicas para la construcción de proyectos creativos cuya finalidad es la solución de problemas. El curso contempla cinco momentos estratégicos para la solución creativa de problemas que se organizan en tres unidades: 1. Descubrimiento/interpretación; 2. Ideación/experimentación; 3. Implementación-evolución. El haber articulado los momentos por unidades responde a la necesidad de fortalecer los vínculos entre estos cuando se pretende comprender un problema (Unidad N°1) generar soluciones (Unidad N°2) y realizar lo propuesto recogiendo y valorando todo lo hecho y aprendido y proyectándolo al futuro (Unidad N°3). Cabe precisar que dicho proceso aunque plantea una secuencia no es lineal sino iterativo y por ello el estudiante podrá retroceder retomar y ajustar lo hecho para fortalecer el proceso global de solución creativa de problemas.Por lo antes expuesto podemos concluir que la estructura del curso pretende que el estudiante desarrolle no solo un repertorio de técnicas y estrategias sino una actitud hacia el cambio y la transformación así como criterios de actuación creativa para la construcción de proyectos efectivos que hagan frente a los problemas reales que enfrenta en su vida universitaria profesional social o personal.Finalmente en el marco del modelo educativo de la UPC el curso centra sus esfuerzos en el desarrollo de la competen

    Clarifying the Cryptic Host Specificity of <i>Blastocystis</i> spp. Isolates from <i>Alouatta palliata</i> and <i>A</i>. <i>pigra</i> Howler Monkeys

    No full text
    <div><p>Although the presence of cryptic host specificity has been documented in <i>Blastocystis</i>, differences in infection rates and high genetic polymorphism within and between populations of some subtypes (ST) have impeded the clarification of the generalist or specialist specificity of this parasite. We assessed the genetic variability and host specificity of <i>Blastocystis</i> spp. in wild howler monkeys from two rainforest areas in the southeastern region of Mexico. Fecal samples of 225 <i>Alouatta palliata</i> (59) and <i>A</i>. <i>pigra</i> (166) monkeys, belonging to 16 sylvatic sites, were analyzed for infection with <i>Blastocystis</i> ST using a region of the small subunit rDNA (SSUrDNA) gene as a marker. Phylogenetic and genetic diversity analyses were performed according to the geographic areas where the monkeys were found. <i>Blastocystis</i> ST2 was the most abundant (91.9%), followed by ST1 and ST8 with 4.6% and 3.5%, respectively; no association between <i>Blastocystis</i> ST and <i>Alouatta</i> species was observed. SSUrDNA sequences in GenBank from human and non-human primates (NHP) were used as ST references and included in population analyses. The haplotype network trees exhibited different distributions: ST1 showed a generalist profile since several haplotypes from different animals were homogeneously distributed with few mutational changes. For ST2, a major dispersion center grouped the Mexican samples, and high mutational differences were observed between NHP. Furthermore, nucleotide and haplotype diversity values, as well as migration and genetic differentiation indexes, showed contrasting values for ST1 and ST2. These data suggest that ST1 populations are only minimally differentiated, while ST2 populations in humans are highly differentiated from those of NHP. The host generalist and specialist specificities exhibited by ST1 and ST2 <i>Blastocystis</i> populations indicate distinct adaptation processes. Because ST1 exhibits a generalist profile, this haplotype can be considered a metapopulation; in contrast, ST2 exists as a set of local populations with preferences for either humans or NHP.</p></div

    Schematic representation of interactions among population indexes.

    No full text
    <p>The gene flow (Nm), genetic differentiation index (F<sub>ST</sub>), and Tajima’s D values of <i>Blastocystis</i> ST by SSUrDNA analysis, according to different sampling sites; only those sites in which there were enough infected howlers to obtain the indexes are shown. The number together the sampling size circle, mean the Tajima’s D value. * <i>p</i><0.01</p

    Haplotype networks for <i>Blastocystis</i>.

    No full text
    <p>Haplotype network trees using SSUrDNA sequences from different countries and hosts for ST1 (a) and ST2 (b). Numbers in branches refer to mutational changes; sizes of circles and colors are proportional to haplotype frequencies. For those animal haplotypes, an image and Roman reference numbers were included, while for human haplotypes, asterisks were added.</p
    corecore