60 research outputs found
Z-prime Gauge Bosons at the Tevatron
We study the discovery potential of the Tevatron for a Z-prime gauge boson.
We introduce a parametrization of the Z-prime signal which provides a
convenient bridge between collider searches and specific Z-prime models. The
cross section for p pbar -> Z-prime X -> l^+ l^- X depends primarily on the
Z-prime mass and the Z-prime decay branching fraction into leptons times the
average square coupling to up and down quarks. If the quark and lepton masses
are generated as in the standard model, then the Z-prime bosons accessible at
the Tevatron must couple to fermions proportionally to a linear combination of
baryon and lepton numbers in order to avoid the limits on Z--Z-prime mixing.
More generally, we present several families of U(1) extensions of the standard
model that include as special cases many of the Z-prime models discussed in the
literature. Typically, the CDF and D0 experiments are expected to probe
Z-prime-fermion couplings down to 0.1 for Z-prime masses in the 500--800 GeV
range, which in various models would substantially improve the limits set by
the LEP experiments.Comment: 34 pages, 13 figure
Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond
In this report we summarize the many dark matter searches currently being
pursued through four complementary approaches: direct detection, indirect
detection, collider experiments, and astrophysical probes. The essential
features of broad classes of experiments are described, each with their own
strengths and weaknesses. The complementarity of the different dark matter
searches is discussed qualitatively and illustrated quantitatively in two
simple theoretical frameworks. Our primary conclusion is that the diversity of
possible dark matter candidates requires a balanced program drawing from all
four approaches.Comment: Report prepared for the Community Summer Study (Snowmass) 2013, on
behalf of Cosmic Frontier Working Groups 1-4 (CF1: WIMP Dark Matter Direct
Detection, CF2: WIMP Dark Matter Indirect Detection, CF3: Non-WIMP Dark
Matter, and CF4: Dark Matter Complementarity); published versio
Running into New Territory in SUSY Parameter Space
The LEP-II bound on the light Higgs mass rules out the vast majority of
parameter space left to the Minimal Supersymmetric Standard Model (MSSM) with
weak-scale soft-masses. This suggests the importance of exploring extensions of
the MSSM with non-minimal Higgs physics. In this article, we explore a theory
with an additional singlet superfield and an extended gauge sector. The theory
has a number of novel features compared to both the MSSM and Next-to-MSSM,
including easily realizing a light CP-even Higgs mass consistent with LEP-II
limits, tan(beta) < 1, and a lightest Higgs which is charged. These features
are achieved while remaining consistent with perturbative unification and
without large stop-masses. Discovery modes at the Tevatron and LHC are
discussed.Comment: 15 pages, 5 figures; Typo in equation (4.5) corrected; submitted to
JHE
Precision Electroweak Data and Unification of Couplings in Warped Extra Dimensions
Warped extra dimensions allow a novel way of solving the hierarchy problem,
with all fundamental mass parameters of the theory naturally of the order of
the Planck scale. The observable value of the Higgs vacuum expectation value is
red-shifted, due to the localization of the Higgs field in the extra dimension.
It has been recently observed that, when the gauge fields propagate in the
bulk, unification of the gauge couplings may be achieved. Moreover, the
propagation of fermions in the bulk allows for a simple solution to potentially
dangerous proton decay problems. However, bulk gauge fields and fermions pose a
phenomenological challenge, since they tend to induce large corrections to the
precision electroweak observables. In this article, we study in detail the
effect of gauge and fermion fields propagating in the bulk in the presence of
gauge brane kinetic terms compatible with gauge coupling unification, and we
present ways of obtaining a consistent description of experimental data, while
allowing values of the first Kaluza Klein mode masses of the order of a few
TeV.Comment: 32 pages, 7 figures. References adde
Physics searches at the LHC
With the LHC up and running, the focus of experimental and theoretical high
energy physics will soon turn to an interpretation of LHC data in terms of the
physics of electroweak symmetry breaking and the TeV scale. We present here a
broad review of models for new TeV-scale physics and their LHC signatures. In
addition, we discuss possible new physics signatures and describe how they can
be linked to specific models of physics beyond the Standard Model. Finally, we
illustrate how the LHC era could culminate in a detailed understanding of the
underlying principles of TeV-scale physics.Comment: 184 pages, 55 figures, 14 tables, hundreds of references; scientific
feedback is welcome and encouraged. v2: text, references and Overview Table
added; feedback still welcom
Simplified Models for LHC New Physics Searches
This document proposes a collection of simplified models relevant to the
design of new-physics searches at the LHC and the characterization of their
results. Both ATLAS and CMS have already presented some results in terms of
simplified models, and we encourage them to continue and expand this effort,
which supplements both signature-based results and benchmark model
interpretations. A simplified model is defined by an effective Lagrangian
describing the interactions of a small number of new particles. Simplified
models can equally well be described by a small number of masses and
cross-sections. These parameters are directly related to collider physics
observables, making simplified models a particularly effective framework for
evaluating searches and a useful starting point for characterizing positive
signals of new physics. This document serves as an official summary of the
results from the "Topologies for Early LHC Searches" workshop, held at SLAC in
September of 2010, the purpose of which was to develop a set of representative
models that can be used to cover all relevant phase space in experimental
searches. Particular emphasis is placed on searches relevant for the first
~50-500 pb-1 of data and those motivated by supersymmetric models. This note
largely summarizes material posted at http://lhcnewphysics.org/, which includes
simplified model definitions, Monte Carlo material, and supporting contacts
within the theory community. We also comment on future developments that may be
useful as more data is gathered and analyzed by the experiments.Comment: 40 pages, 2 figures. This document is the official summary of results
from "Topologies for Early LHC Searches" workshop (SLAC, September 2010).
Supplementary material can be found at http://lhcnewphysics.or
Dark sectors 2016 Workshop: community report
This report, based on the Dark Sectors workshop at SLAC in April 2016,
summarizes the scientific importance of searches for dark sector dark matter
and forces at masses beneath the weak-scale, the status of this broad
international field, the important milestones motivating future exploration,
and promising experimental opportunities to reach these milestones over the
next 5-10 years
- …