2,366 research outputs found
A Spitzer IRS Survey of NGC 1333: Insights into disk evolution from a very young cluster
We report on the {\lambda} = 5-36{\mu}m Spitzer Infrared Spectrograph spectra
of 79 young stellar objects in the very young nearby cluster NGC 1333. NGC
1333's youth enables the study of early protoplanetary disk properties, such as
the degree of settling as well as the formation of gaps and clearings. We
construct spectral energy distributions (SEDs) using our IRS data as well as
published photometry and classify our sample into SED classes. Using
"extinction-free" spectral indices, we determine whether the disk, envelope, or
photosphere dominates the spectrum. We analyze the dereddened spectra of
objects which show disk dominated emission using spectral indices and
properties of silicate features in order to study the vertical and radial
structure of protoplanetary disks in NGC 1333. At least nine objects in our
sample of NGC 1333 show signs of large (several AU) radial gaps or clearings in
their inner disk. Disks with radial gaps in NGC 1333 show more-nearly pristine
silicate dust than their radially continuous counterparts. We compare
properties of disks in NGC 1333 to those in three other well studied regions,
Taurus-Auriga, Ophiuchus and Chamaeleon I, and find no difference in their
degree of sedimentation and dust processing.Comment: 67 pages, 20 figures, accepted to The Astrophysical Journal
Supplement Serie
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Disk Evolution in the three Nearby Star-Forming Regions of Taurus, Chamaeleon, and Ophiuchus
We analyze samples of Spitzer Infrared Spectrograph (IRS) spectra of T Tauri
stars in the Ophiuchus, Taurus, and Chamaeleon I star-forming regions, whose
median ages lie in the <1 to 2 Myr range. The median mid-infrared spectra of
objects in these three regions are similar in shape, suggesting, on average,
similar disk structures. When normalized to the same stellar luminosity, the
medians follow each other closely, implying comparable mid-infrared excess
emission from the circumstellar disks. We use the spectral index between 13 and
31 micron and the equivalent width of the 10 micron silicate emission feature
to identify objects whose disk configuration departs from that of a continuous,
optically thick accretion disk. Transitional disks, whose steep 13-31 micron
spectral slope and near-IR flux deficit reveal inner disk clearing, occur with
about the same frequency of a few percent in all three regions. Objects with
unusually large 10 micron equivalent widths are more common (20-30%); they
could reveal the presence of disk gaps filled with optically thin dust. Based
on their medians and fraction of evolved disks, T Tauri stars in Taurus and
Chamaeleon I are very alike. Disk evolution sets in early, since already the
youngest region, the Ophiuchus core (L1688), has more settled disks with larger
grains. Our results indicate that protoplanetary disks show clear signs of dust
evolution at an age of a few Myr, even as early as ~1 Myr, but age is not the
only factor determining the degree of evolution during the first few million
years of a disk's lifetime.Comment: 23 pages, 20 figures; accepted for publication in Ap
Epigenetic and integrative cross-omics analyses of cerebral white matter hyperintensities on MRI
Cerebral white matter hyperintensities on MRI are markers of cerebral small vessel disease, a major risk factor for dementia and stroke. Despite the successful identification of multiple genetic variants associated with this highly heritable condition, its genetic architecture remains incompletely understood. More specifically, the role of DNA methylation has received little attention. We investigated the association between white matter hyperintensity burden and DNA methylation in blood at approximately 450,000 CpG sites in 9,732 middle-aged to older adults from 14 community-based studies. Single-CpG and region-based association analyses were carried out. Functional annotation and integrative cross-omics analyses were performed to identify novel genes underlying the relationship between DNA methylation and white matter hyperintensities. We identified 12 single-CpG and 46 region-based DNA methylation associations with white matter hyperintensity burden. Our top discovery single CpG, cg24202936 (P = 7.6 × 10-8), was associated with F2 expression in blood (P = 6.4 × 10-5), and colocalized with FOLH1 expression in brain (posterior probability =0.75). Our top differentially methylated regions were in PRMT1 and in CCDC144NL-AS1, which were also represented in single-CpG associations (cg17417856 and cg06809326, respectively). Through Mendelian randomization analyses cg06809326 was putatively associated with white matter hyperintensity burden (P = 0.03) and expression of CCDC144NL-AS1 possibly mediated this association. Differentially methylated region analysis, joint epigenetic association analysis, and multi-omics colocalization analysis consistently identified a role of DNA methylation near SH3PXD2A, a locus previously identified in genome-wide association studies of white matter hyperintensities. Gene set enrichment analyses revealed functions of the identified DNA methylation loci in the blood-brain barrier and in the immune response. Integrative cross-omics analysis identified 19 key regulatory genes in two networks related to extracellular matrix organization, and lipid and lipoprotein metabolism. A drug repositioning analysis indicated antihyperlipidemic agents, more specifically peroxisome proliferator-activated receptor alpha, as possible target drugs for white matter hyperintensities. Our epigenome-wide association study and integrative cross-omics analyses implicate novel genes influencing white matter hyperintensity burden, which converged on pathways related to the immune response and to a compromised blood brain barrier possibly due to disrupted cell-cell and cell-extracellular matrix interactions. The results also suggest that antihyperlipidemic therapy may contribute to lowering risk for white matter hyperintensities possibly through protection against blood brain barrier disruption
Nuclear astrophysics: the unfinished quest for the origin of the elements
Half a century has passed since the foundation of nuclear astrophysics. Since
then, this discipline has reached its maturity. Today, nuclear astrophysics
constitutes a multidisciplinary crucible of knowledge that combines the
achievements in theoretical astrophysics, observational astronomy,
cosmochemistry and nuclear physics. New tools and developments have
revolutionized our understanding of the origin of the elements: supercomputers
have provided astrophysicists with the required computational capabilities to
study the evolution of stars in a multidimensional framework; the emergence of
high-energy astrophysics with space-borne observatories has opened new windows
to observe the Universe, from a novel panchromatic perspective; cosmochemists
have isolated tiny pieces of stardust embedded in primitive meteorites, giving
clues on the processes operating in stars as well as on the way matter
condenses to form solids; and nuclear physicists have measured reactions near
stellar energies, through the combined efforts using stable and radioactive ion
beam facilities. This review provides comprehensive insight into the nuclear
history of the Universe and related topics: starting from the Big Bang, when
the ashes from the primordial explosion were transformed to hydrogen, helium,
and few trace elements, to the rich variety of nucleosynthesis mechanisms and
sites in the Universe. Particular attention is paid to the hydrostatic
processes governing the evolution of low-mass stars, red giants and asymptotic
giant-branch stars, as well as to the explosive nucleosynthesis occurring in
core-collapse and thermonuclear supernovae, gamma-ray bursts, classical novae,
X-ray bursts, superbursts, and stellar mergers.Comment: Invited Review. Accepted for publication in "Reports on Progress in
Physics" (version with low-resolution figures
Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine
[This corrects the article DOI: 10.1186/s13054-016-1208-6.]
The First Post-Kepler Brightness Dips of KIC 8462852
We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process
The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V
The eighteenth data release of the Sloan Digital Sky Surveys (SDSS) is the
first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises
three primary scientific programs, or "Mappers": Milky Way Mapper (MWM), Black
Hole Mapper (BHM), and Local Volume Mapper (LVM). This data release contains
extensive targeting information for the two multi-object spectroscopy programs
(MWM and BHM), including input catalogs and selection functions for their
numerous scientific objectives. We describe the production of the targeting
databases and their calibration- and scientifically-focused components. DR18
also includes ~25,000 new SDSS spectra and supplemental information for X-ray
sources identified by eROSITA in its eFEDS field. We present updates to some of
the SDSS software pipelines and preview changes anticipated for DR19. We also
describe three value-added catalogs (VACs) based on SDSS-IV data that have been
published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.Comment: Accepted to ApJ
- …