306 research outputs found

    Effects of environmentally relevant concentrations of microplastics on amphipods

    Get PDF
    Lack of microplastics (MP) toxicity studies involving environmentally relevant concentrations and exposure times is concerning. Here we analyzed the potential adverse effects of low density polyethylene (LDPE) MP at environmentally relevant concentration in sub-chronic exposure to two amphipods Gmelinoides fasciatus and Gammarus lacustris, species that naturally compete with each other for their habitats. 14-day exposure to 2 μg/L (8 particles/L corresponding to low exposure) and 2 mg/L (~8400 particles/L, corresponding to high exposure) of 53–100 μm LDPE MP were used to assess ingestion and egestion of MP, evaluate its effects on amphipod mortality, swimming ability and oxidative stress level. Both amphipod species were effectively ingesting and egesting LDPE MP. On the average, 0.8 and 2.5 MP particles were identified in the intestines of each amphipod exposed to 2 μg/L and 2 mg/L LDPE MP, respectively. Therefore, intestinal MP after 14-day exposure did not fully reflect the differences in LDPE MP exposure concentrations. Increased mortality of both amphipods was observed at 2 mg/L LDPE MP and in case of G. lacustris also at 2 μg/L exposure. The effect of LDPE on swimming activity was observed only in case of G. fasciatus. Oxidative stress marker enzymes SOD, GPx and reduced glutathione GSH varied according to amphipod species and LDPE MP concentration. In general G. lacustris was more sensitive towards LDPE MP induced oxidative stress. Overall, the results suggested that in MP polluted environments, G. lacustris may lose its already naturally low competitiveness and become overcompeted by other more resistant species. The fact that in the sub-chronic foodborne exposure to environmentally relevant and higher LDPE MP concentrations all the observed toxicological endpoints were affected refers to the potential of MP to affect and disrupt aquatic communities in the longer perspective.This research was funded by the Estonian Research Council (Estonia) grants PUT1512 (M. Heinlaan and M. Raudna-Kristoffersen) and PRG1427 (M. Heinlaan). This work was also supported by the research grants PSG653 (R. Kreitsberg and R. Meitern) and PRG1496 (A. Ivask) of the Estonian Research Council. The project was carried out in collaboration with Vortsj ˜ arv ¨ Centre for Limnology of the Estonian University of Life Sciences (EMU). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 951963

    Analysis of fullerene-C 60 and kinetic measurements for its accumulation and depuration in Daphnia magna

    Full text link
    A simple method for analyzing masses of water suspended fullerenes (nC 60 ) in Daphnia magna by extracting to toluene and measuring by ultraviolet-vis spectrophotometry was developed. This method was used to assess bioaccumulation and depuration rates by daphnia after nC 60 exposure in artificial freshwater. Accumulation was rapid during the first few hours, and based on accumulation modeling, 90% of the steady-state concentration was reached in 21 h. After exposure for 24 h to a 2 mg/L fullerene solution, the daphnia accumulated 4.5 ± 0.7 g/kg wet weight, or 0.45% of the organism wet mass. Daphnids exposed to 2 mg/L fullerenes for 24 h eliminated 46 and 74% of the accumulated fullerenes after depuration in clean water for 24 and 48 h, respectively. Transmission electron microscopy revealed that the majority of the fullerenes present in the gut of daphnids were large agglomerates. The significant fullerene uptake and relatively slow depuration suggest that D. magna may play a role as a carrier of fullerene from one trophic level to another. Additionally, D. magna may impact the fate of suspended fullerene particles in aquatic ecosystems by their ability to pack fullerene agglomerates into larger particles than were found in the exposure water, and then excrete agglomerates that are not stable in water, causing them to settle out of solution. This process decreases fullerene exposure to other aquatic organisms in the water column but may increase exposure to benthic organisms in the sediment. Environ. Toxicol. Chem. 2010;29:1072–1078. © 2010 SETACPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71370/1/124_ftp.pd

    Aquatic Ecotoxicity Testing of Nanoparticles—The Quest To Disclose Nanoparticle Effects

    Get PDF
    The number of products on the market containing engineered nanoparticles (ENPs) has increased significantly, and concerns have been raised regarding their ecotoxicological effects. Environmental safety assessments as well as relevant and reliable ecotoxicological data are required for the safe and sustainable use of ENPs. Although the number of publications on the ecotoxicological effects and uptake of ENPs is rapidly expanding, the applicability of the reported data for hazard assessment is questionable. A major knowledge gap is whether nanoparticle effects occur when test organisms are exposed to ENPs in aquatic test systems. Filling this gap is not straightforward, because of the broad range of ENPs and the different behavior of ENPs compared to “ordinary” (dissolved) chemicals in the ecotoxicity test systems. The risk of generating false negatives, and false positives, in the currently used tests is high, and in most cases difficult to assess. This Review outlines some of the pitfalls in the aquatic toxicity testing of ENPs which may lead to misinterpretation of test results. Response types are also proposed to reveal potential nanoparticle effects in the aquatic test organisms

    Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens

    Get PDF
    This review details the antimicrobial applications of inorganic nanomaterials of mostly metallic form, and the augmentation of activity by surface conjugation of peptide ligands. The review is subdivided into three main sections, of which the first describes the antimicrobial activity of inorganic nanomaterials against gram-positive, gram-negative and multidrug-resistant bacterial strains. The second section highlights the range of antimicrobial peptides and the drug resistance strategies employed by bacterial species to counter lethality. The final part discusses the role of antimicrobial peptide-decorated inorganic nanomaterials in the fight against bacterial strains that show resistance. General strategies for the preparation of antimicrobial peptides and their conjugation to nanomaterials are discussed, emphasizing the use of elemental and metallic oxide nanomaterials. Importantly, the permeation of antimicrobial peptides through the bacterial membrane is shown to aid the delivery of nanomaterials into bacterial cells. By judicious use of targeting ligands, the nanomaterial becomes able to differentiate between bacterial and mammalian cells and, thus, reduce side effects. Moreover, peptide conjugation to the surface of a nanomaterial will alter surface chemistry in ways that lead to reduction in toxicity and improvements in biocompatibility

    Chitosan/PEO nanofibers electrospun on metallized track-etched membranes: fabrication and characterization

    Get PDF
    The development of next-generation adsorption, separation, and filtration materials is growing with an increased research focus on polymer composites. In this study, a novel blend of chitosan (CS) and polyethylene oxide (PEO) nanofiber mats was electrospun on titanium (Ti)-coated polyethylene terephthalate (PET) track-etched membranes (TMs) with after-treatment by glutaraldehyde in the vapor phase for enhancing the nanofiber stability by crosslinking. The prepared composite, titanium-coated track-etched nanofiber membrane (TTM-CPnf) was characterized by Fourier transform infra-red (FTIR), water contact angle, and scanning electron microscopy (SEM) analyses. Smooth and uniform CS nanofibers with an average fiber diameter of 156.55 nm were produced from a 70/30 CS/PEO blend solution prepared from 92 wt. % acetic acid and electrospun at 15 cm needle to collector distance with 0.5 mL/h flow rate and an applied voltage of 30 kV on the TTM-CPnf. Short (15 min) and long (72 h)-term solubility tests showed that after 3 h, crosslinked nanofibers were stable in acidic (pH = 3), basic (pH = 13), and neutral (pH = 7) solutions. The crosslinked TTM-CPnf material was biocompatible based on the low mortality of freshwater crustaceans Daphnia magna. The composite membranes comprised of electrospun nanofiber and TMs proved to be biocompatible and may thus be suitable for diverse applications such as dual adsorption–filtration systems in water treatment
    • …
    corecore