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Aquatic Ecotoxicity of Microplastics

and Nanoplastics: Lessons Learned from

Engineered Nanomaterials

Sinja Rist and Nanna Bloch Hartmann

Abstract The widespread occurrence of microplastics in the aquatic environment

is well documented through international surveys and scientific studies. Further

degradation and fragmentation, resulting in the formation of nanosized plastic

particles – nanoplastics – has been highlighted as a potentially important issue. In

the environment, both microplastics and nanoplastics may have direct ecotoxico-

logical effects, as well as vector effects through the adsorption of co-contaminants.

Plastic additives and monomers may also be released from the polymer matrix and

cause adverse effects on aquatic organisms. Although limited information regard-

ing the ecotoxicological effects of nano- and microplastics is available at present,

their small size gives rise to concern with respect to the adverse effects and disloca-

tion of these particles inside organisms – similar to issues often discussed for

engineered nanomaterials. In the same way, transport of co-contaminants and

leaching of soluble substances are much debated issues with respect to the

ecotoxicology of nanomaterials.

In this chapter, we draw on existing knowledge from the field of ecotoxicology

of engineered nanomaterials to discuss potential ecotoxicological effects of nano-

and microplastics. We discuss the similarities and differences between nano- and

microplastics and engineered nanomaterials with regard to both potential effects

and expected behaviour in aquatic media. One of the key challenges in ecotoxico-

logy of nanomaterials has been the applicability of current test methods, originally

intended for soluble chemicals, to the testing of particle suspensions. This often

requires test modifications and special attention to physical chemical character-

isation and data interpretation. We present an overview of lessons learned from
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nanomaterials and offer suggestions on how these can be transferred to recommen-

dations for ecotoxicity testing of nano- and microplastics.

Keywords Biological effects, Nanoparticles, Nanotoxicology, Test methods,

Vector effects

1 Engineered Nanomaterials Versus Plastic Particles:

Comparing Apples and Oranges?

Over the last half century, it has become increasingly clear that environmental

pollution presents a global societal challenge due to immediate and long-term

hazards posed by chemicals in the environment. The focus of researchers, legisla-

tors and the population has been on chemicals such as pesticides, persistent organic

pollutants, heavy metals, pharmaceuticals and endocrine-disrupting chemicals, as

well as the effect of chemical mixtures. The common denominator for these groups

of chemicals is that they are most often soluble in aqueous media. Ecotoxicology is

a multidisciplinary field, integrating ecology and toxicology. It is the study of

potentially harmful effects of chemicals on biological organisms, from the cellular

to the ecosystem level. Standardised and harmonised ecotoxicological test methods

have been developed within the frameworks of OECD and ISO to assess the envi-

ronmental fate and effects of chemicals.

During the last decade, a new group of chemical substances has entered the

limelight, namely, particles. The increasing use of nanotechnology and production

of engineered nanomaterials has sharpened the public, scientific and regulatory

focus on their potential consequences for the environment and human health,

leading to the formation of the new scientific field of ecotoxicology of nano-

materials. The concerns apply not only to engineered nanomaterials but also to

unintentionally produced anthropogenic nanomaterials such as ultrafine particles

resulting from combustion processes. Similarly, it is becoming increasingly clear

that microscopic plastic particles are widespread in the environment, resulting from

industrial use, human activities and inadequate waste management. This plastic

debris is found in the micrometre size range (i.e. microplastics) although

submicron-sized plastic particles (i.e. nanoplastics) are also expected to be formed

in the environment through continuous fragmentation of larger plastic particles

[1, 2]. Microplastics are commonly defined as plastic particles smaller than 5 mm

[3], whereas no common definition for nanoplastics has yet been established. The

term has been used for particles <1 μm as well as <100 nm [2, 4]. Engineered

nanomaterials, on the other hand, are more unambiguously defined as having at

least one dimension in the size range of 1–100 nm [5]. Nanoparticles are a subgroup

of nanomaterials possessing three dimensions within this size range. The term

‘nanomaterials’ is generally used here; however, ‘nanoparticles’ are referred to in

certain places to emphasise the particulate nature of the material. To date, no

established analytical methods exist for the detection of nanoplastics in the aquatic
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environment, and no studies have demonstrated their presence [2]. However, labo-

ratory studies have shown the formation of nanoplastics down to sizes of 30 nm

during artificial weathering of larger plastic materials, using nanoparticle tracking

analysis [6]. This is a strong indication that this process can also take place in the

environment. Particles as emerging environmental pollutants call for a better under-

standing of their environmental behaviour and potentially harmful effects on organ-

isms. Ecotoxicity testing of particles represents a shift in test paradigm away from

testing of soluble chemicals and demands reconsideration of existing test methods

and procedures, including the standardised methods developed by OECD and ISO

[7, 8]. On the one hand, parallels can generally be drawn between ecotoxicological

testing of particles, independent of whether those particles are engineered nano-

materials or plastic particles [9]. On the other hand, it is important to understand

where the similarities end, in order to avoid redundant testing, use of inappropriate

test methods and generation of meaningless data. Nano- and microplastics cover a

wide range in terms of particle sizes. To illustrate this: If a 1 mm particle corre-

sponded to the size of the Earth, then a nanosized particle would correspond to the

International Space Station in the orbit around it, i.e. differing in size by six orders

of magnitude. Resemblances, in terms of behaviour, fate and effects, are more

likely to occur for particles that are similar in size. Therefore the similarities

between engineered nanomaterials and nano- and microplastic particles are more

likely to apply for smaller microplastics of up to a few microns as well as the

submicron-sized nanoplastic particles, which will be the main focus of this chapter.

Further noteworthy differences exist in terms of their chemical properties, sources

and their related methodological challenges, as described in further detail below.

2 Sources, Emissions and Regulation

The potential sources and routes by which engineered nanomaterials and nano- and

microplastics enter the environment are somewhat similar (see Fig. 1). As their name

suggests, engineered nanomaterials are intentionally designed and produced for

specific applications, processes or products. Production can take place by synthesis

(bottom-up approach) or comminution of larger materials (top-down approach). This

is comparable to the production of primary nano- and microplastics, for example,

microbeads intentionally produced for cosmetic products or plastic pellets used as

feeding material in plastic production. Depending on the definitions applied, primary

nanoplastics would actually fall under the definition of engineered nanomaterials. An

estimated amount of more than 4,000 t of primary microplastic beads were used in

cosmetics in Europe in 2012 [10]. Nonetheless, primary microplastics only represent

a small fraction of the estimated overall environmental microplastics load [11], a

fraction, however, which can relatively easily be addressed and reduced. The main

sources of nano- and microplastic pollution, however, are uncontrolled processes

such as abrasion and degradation of larger plastic products and fragments,

i.e. secondary sources of anthropogenic origin [12]. These sources include
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mismanaged plastic waste, either discarded in the environment directly or improperly

collected and disposed of in landfills, subsequently reaching the environment by

wind- or water-driven transport [13]. Also, industrial abrasion processes (e.g. air

blasting), synthetic paints and car tyres are thought to contribute significantly to the

generation of microplastics [11]. Wind and surface run-off water can transport these

to aquatic ecosystems. Another important source is synthetic textiles, which have

been shown to release large amounts of microplastic fibres into waste water during

washing [14]. The relative importance of secondary sources is unique to micro- and

nanoplastics, compared to engineered nanomaterials, in the sense that engineered

nanomaterials are produced through controlled industrial processes and not generated

from the bulk material in the environment. Their release is thereby linked to

specific products or industrial applications and therefore comparable to primary

microplastics.

The differences in sources between engineered/industrially produced primary

particles and unintentionally produced secondary particles have consequences for

risk management and regulatory options. For engineered nanomaterials, regulatory

measures can ensure that risk is minimised to acceptable levels through upstream

regulation of their specific production and use. Regulations addressing criteria for

air emissions from various combustion processes can help to reduce the release of

Fig. 1 Nano- and microplastics and engineered nanomaterials can enter the environment through

different processes: intentional industrial manufacturing (as in the case of engineered

nanomaterials and primary nano- and microplastics) or through uncontrolled anthropogenic

processes (secondary nano- and microplastics). The different sources result in particles with

different shapes, morphologies, compositions, sizes, etc. Particles manufactured under controlled

industrial conditions tend to be more homogenous and uniform in their properties. Blue, primary

sources; red, secondary sources
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unintentionally produced anthropogenic nanomaterials. For micro- and nano-

plastics, upstream regulation may be effective in reducing the environmental emis-

sions of primary microplastics. Examples are the US ‘Microbead-Free Waters Act

of 2015’ [15] prohibiting plastic microbeads in rinse-off cosmetics including

toothpaste as well as the upcoming UK ban on microbeads in cosmetics by 2017

[16]. For secondary microplastics, on the other hand, reducing their environmental

occurrence involves taking general action against plastics entering the environment

during all steps of plastic production, use and waste management. Taxation of, or a

ban on, single-use plastic shopping bags [17] and bottle return systems [18] are

examples of regulatory measures aimed at reducing the general environmental

plastic load. Once the plastic has entered the environment, the formation of micro-

plastics is governed by the inherent properties of the plastic and the environmental

conditions [19] and thereby practically impossible to mitigate through regulatory

measures.

3 Material Synthesis, Chemical Composition

and Consequences for Environmental Detection

A clear difference between engineered nanomaterials and nano- and microplastics

relates to their chemical composition. In principle, engineered nanomaterials can be

produced from any solid material. Higher production volume engineered nano-

materials are typically made from metals or metal oxides (such as TiO2, CeO2 and

Ag) or from carbon (such as carbon nanotubes (CNTs)) [20] although organic

nanomaterials are also manufactured (from polymers, monomers and lipids)

[21]. Nano- and microplastics, on the other hand, consist specifically of synthetic

polymers, produced by polymerisation of various monomers and covering a range

of materials such as polyethylene (PE), polypropylene (PP), polystyrene (PS) and

polyvinylchloride (PVC) [1, 22]. Synthetic polymers differ in properties such as

density, porosity and content of non-polymeric additives. Additives may constitute

up to 50% of the total mass of plastics and can be composed of both organic and

inorganic substances [23]. Hence, while nano- and microplastics consist of specific

synthetic polymers (e.g. PE or PP), there are as many variations as there are combi-

nations and ratios of additives. These additives may alter the properties of the

material in such a way that it will behave differently in the environment and cause

different environmental effects. The same is true for engineered nanomaterials: For

engineered nanoparticles with a given chemical composition (e.g. TiO2), the prop-

erties change with different crystalline structures and surface coatings. At the same

time, engineered nanomaterials can be made from a range of different materials and

combinations of materials. An ongoing discussion within engineered nanomaterials

relates to ‘sameness’: When can two particles be considered the same and when are

they so different that they cannot? This has consequences for categorisation and
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read-across for regulatory purposes [24]. For example, if data exist on the toxicity

of a certain nanomaterial, can these data then be used to assess the safety of a

similar nanomaterial? On what parameters should these two particles be similar:

size, shape, surface chemistry? And when is ‘similar’ similar enough to be consid-

ered ‘the same’? This discussion will be relevant for nano- and microplastics,

should legislative frameworks require regulatory data on their environmental

safety. According to European legislation, polymers are currently exempted from

registration under REACH [25]. However, this may change in the future, making

the discussion of ‘sameness’ also relevant for primary nano- and microplastics. For

secondary microplastics, sameness is likewise relevant to categorising particles

occurring in the environment, as well as to comparing observed behaviour and

effects of nano- and microplastic particles between different scientific studies.

The characteristics and chemical composition of particles have consequences for

the feasibility of detection and quantification of particles, especially in environ-

mental samples and biota. It is highly challenging to detect engineered nano-

materials in the environment, especially due to their small size. Under controlled

laboratory conditions, with known nanomaterials, techniques based on electron

microscopy, mass spectrometry and spectroscopy can be applied to investigating

the behaviour of the nanomaterials in the test system [26]. However, applying the

same techniques to the detection and quantification of nanomaterials in a

natural environmental matrix is not straightforward – even when looking for a

known nanomaterial. For this reason, monitoring data for engineered nanomaterials

are practically non-existent. One of the main problems is that the nanomaterials

may be modified through sample preparation (e.g., causing dissolution or aggrega-

tion), making it difficult to ‘extract’ the particles from the sample in their naturally

occurring state [26]. Electron microscopy, in combination with elemental ratios,

has successfully been applied in detecting TiO2 nanoparticles released from sun-

screen into lake surface waters [27]. Comparing elemental ratios was necessary in

order to distinguish natural Ti-bearing particles from their engineered counterparts.

Even for engineered nanomaterials made of non-ubiquitous elements (e.g. Ag),

detection is not straightforward due to complicated sample preparations, matrix

interferences and analytical difficulties in distinguishing between different metal

species [28].

Nano- and microplastics pose additional challenges due to their organic origin,

affecting and limiting the analytical options when they are present in an organic

matrix. While the larger-sized fractions can be collected or extracted fairly easily,

for example, by filtering water samples or density-based fractionation of sand, it

becomes increasingly difficult to distinguish smaller microplastics, and especially

nanoplastics, from the surrounding environmental matrix. At the same time, sec-

ondary nano- and microplastics, which constitute the main environmental load of

plastic particles, are irregular in shape, resulting from their formation through

fragmentation rather than controlled production. Also, they are often transparent,

semi-transparent or neutral in colour. A study has been carried out to compare

stereomicroscopy and Fourier transform infrared spectroscopy (FT-IR) as
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identification methods for microplastics in environmental samples. White and

transparent fragments were identified through FT-IR, but not easily detected by

microscopy, leading to underestimation of the actual concentrations of micro-

plastics [29]. In contrast, fibres, identified as cotton fibres by FT-IR, were mistaken

for microplastics by stereomicroscopy, leading to overestimation of microplastic

fibres using this technique [29].

The development of FT-IR combined with microspectroscopy (i.e. micro-FT-

IR) greatly improved the spatial resolution, allowing the identification of particles

down to a few μm [30, 31]. The technique allows measurement of transmission and

reflectance. The first gives a higher-quality spectrum, but is limited to thin samples,

while the latter can also be applied to thick and opaque particles [32]. However,

irregular surface structures (e.g. of plastic fragments) can lead to refractive errors

when using the reflectance mode [30]. In this case, attenuated total reflectance

(ATR) micro-FT-IR can be used to improve the quality of the spectrum. The

standard FT-IR techniques rely on a visual pre-sorting of potential plastic particles,

which is time-consuming and prone to errors [30]. Therefore, the coupling of

micro-FT-IR with focal plane array detectors is considered a promising method

for high throughput analysis of microplastics in complex environmental samples

[30, 31, 33]. Currently, however, the technique is limited to particles larger than

10–20 μm, and sample preparation is labour-intensive. As for many of the analyt-

ical techniques used for engineered nanoparticles, FT-IR is particularly useful for

controlled laboratory tests with microplastics of known composition. This material

can be included in the spectral library and is then detected in samples. However, it

can be difficult to use FT-IR to identify unknown plastics particles from environ-

mental samples, as the spectra of polymers change due to the weathering and

chemical changes of the surface of the plastics [29]. Raman spectroscopy is another

commonly used method to identify plastic particles. In combination with micro-

scopy (i.e. micro-Raman), a resolution of less than 1 μm is achievable. However,

the applicability of micro-Raman with automated spectral imaging for analysis of

an entire sample is yet to be demonstrated for microplastics in environmental

matrices [32].

The development of methods to detect and characterise nano- and microplastics

in environmental matrices with a higher resolution, lower time consumption and

high throughput is ongoing, comparable to the developments being made for

engineered nanomaterials. The requirements for ideal analytical techniques are

similar for both groups of particles. As previously described by Tiede et al. [26],

such techniques should (a) cause minimal changes to the physical and chemical

state of the particles during sample preparation; (b) provide information on several

physicochemical parameters, such as chemical composition, size, shape, etc.; and

(c) be able to handle complex, heterogeneous samples [26].
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4 Particles as a Vector for Co-pollutants

One of the possible environmental processes, often discussed for both engineered

nanomaterials and microplastics, is their ability to act as vectors for other pollut-

ants. Through their use in, for example, consumer products and medical and

industrial applications, engineered nanomaterials and primary microplastics will

come into contact with other chemical substances, such as preservatives, surfactants

and active ingredients in pharmaceutical drugs. Finally, through different disposal

routes, the particles will come into contact with environmental contaminants

present in, for example, waste water streams and landfill leachate. As a conse-

quence, intentional and unintentional mixing of the particles with other chemical

compounds takes place before, during and after their intended use. By this process,

an otherwise inert and non-toxic particle potentially becomes a carrier of toxic

compounds. At the same time hydrophobic pollutants with a low water solubility

become more mobile when sorbed to plastic particles, which may increase their

transport and consequently impact their distribution and bioavailability [34]. It has

been shown that engineered nanomaterials can sorb and transport organic pollutants

in the aquatic environment [35–37]. Similarly, nano- and microplastics have the

potential to act as vectors for hydrophobic organic chemicals, as recently reviewed

by Rochman [38].

With an increased surface area-to-volume ratio, smaller particles will generally

have a larger capacity for adsorption of chemical substances (on an ‘adsorption per
particle mass’ basis). At the same time, their small size may facilitate uptake by

organisms and even potential translocation into different parts and organs. This

vector function is governed by the properties of the pollutant and the particle

[39]. Important particle properties include chemical composition, porosity, size

and surface properties (coating, charge). Weathering processes can both increase

and decrease sorption [40]. The formation of cracks and increased surface rough-

ness leads to an increased surface area and, therefore, a potentially increased

sorption capacity. Counteracting this, weathering may also change crystallinity,

increase density and hardness and change surface charge. For instance, changes in

surface charge as a result of weathering can increase the sorption of some sub-

stances and decrease the affinity for others [41].

Plastic to water partitioning coefficients (log Kpw) for various organic chemicals

(log Kow from 0.90 to 8.76) have been collected for polydimethylsiloxane (PDMS),

low density PE (LDPE), high density PE (HDPE), ultra-high molecular weight PE

(UHMWPE), PP, PS and PVC [41]. Regression analysis showed generally good

correlations between log Kow and log Kpw and linear proportionality for LDPE and

HDPE. This analysis suggests that the partitioning of chemicals into plastics is

driven by hydrophobic interactions – similar to the partitioning of chemicals into

animal lipids [41]. At the same time, pollutants may adhere to the particle surfaces.

For example, it has been found that nanoplastics have a capability to adsorb

hydrophobic pollutants, a process which can potentially be exploited in the removal

of chemicals from contaminated soil and water [42]. Hence, for nano- and
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microplastics the processes of ad- and absorption may both be relevant to their

potential role as pollutant vectors.

Many engineered nanomaterials are manufactured from inorganic materials – or

inorganic carbon in the case of C60 fullerenes and CNTs. In these cases, the sorption

of co-pollutants is governed by adsorption to the particle surface, rather than

absorption into the particle matrix. Hence, the sorption capacity is determined by

available adsorption sites on the surface of the nanomaterial. The differences in

sorption processes between polymer particles and inorganic nanomaterials are

illustrated in Fig. 2.

Nano- and microplastics as well as engineered nanomaterials have the potential

to act as vectors for co-pollutants in the environment. The process will always

depend on the specific chemical pollutant (e.g. Kow), the specific particle properties

(e.g. composition and size) and the properties of the surrounding media (e.g. pH),

influencing the particle surface properties and the speciation and dissociation of the

chemical pollutant. It has been proposed that the vector effect of particle-mediated

transport of co-pollutants can be divided into three groups: (1) an environmental

vector effect, whereby the co-pollutant is transported through the environment;

(2) an organismal vector effect, whereby the co-pollutant is transported into organ-

isms; and (3) a cellular vector effect whereby the co-pollutant is transported with

the particle into cells [9]. Combining this with a proposed framework for different

pollutant-particle interaction mechanisms, originally developed for engineered

nanomaterials [37], the vector function of particle pollutants can be summarised

as illustrated in Fig. 3.

Another type of vector function relates to leaching of substances that were

originally part of the particle matrix. In the case of engineered nanomaterials, this

is primarily metal ions (from metal and metal oxide nanomaterials) or release of

coating materials. Similarly, polymer additives can leach from plastic particles.

From the field of ecotoxicology of nanomaterials, the importance of properly

quantifying ion release is becoming increasingly clear, as observed biological

effects can often be directly linked to the concentration of free metal ions [8]. In

the same way, the release of plastic additives should be examined when

A B C
Fig. 2 Illustration of the difference between adsorption (a) (more pronounced for inorganic

engineered nanomaterials) and absorption (b) (more pronounced for polymer particles). In the

case of polymer particles, the sorption may also be a combination of ab- and adsorption processes (c)
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investigating the potential biological effects of nano- and microplastics. This will

enable a differentiation between effects caused by the particle itself and effects

caused by plastic additives.

5 Biological Effects

Engineered nanomaterials are often designed to have a certain reactivity, function-

ality or biological effect. As discussed, nano- and microplastics often stem from

unintentional anthropogenic rather than engineered processes. Even when they are

intentionally produced, they are not as such intended to be biologically active.

Certain polymer additives may, however, have the purpose of, for example,

preventing biotic or abiotic degradation. For both engineered nanomaterials and

nano- and microplastics, it is therefore useful to consider their intended use and

properties when evaluating their potential environmental risk. Engineered nano-

materials that are intended to have biocidal effects are likely to be more toxic to

non-target organisms than materials intended to be inert. Similarly, plastic particles

A

B

C
I IIIII IV

Fig. 3 Illustration of the potential vector function of particles. (a) The interaction between the

particles (orange, filled) and the co-pollutants (purple, open) will depend on the properties of the

particles, the pollutant and the surrounding medium. This will result in various degrees of

absorption and/or adsorption. (b) The particles and pollutants are transported in the environment

– individually and co-transported. This has been referred to as the ‘environmental vector effect’
[9]. (c) The particles and pollutants interact with biological organisms. This can be via ‘indepen-
dent action’ whereby the particle and the pollutant interact with the organisms individually (I ). It
can also be via desorption of the co-pollutant (or leaching of ions/additive), which subsequently

interact with the organism (II). The pollutant can also be co-transported into the organisms and

potentially further into cells (III). This has been referred to as an organismal and cellular vector

effect, respectively [9]. Finally, the particles can act as a ‘trap’ for the pollutants, thereby

decreasing the interactions between the pollutant and the organisms (IV)
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containing biocidal additives, plasticisers or flame retardants are likely to be more

environmentally hazardous, as these substances may leach out of the polymer

matrix.

One effect mechanism is being highlighted as important for both engineered

nanomaterials and nano- and microplastics, namely, physical interactions between

the particle and the organisms [43]. This includes inflammation and interference

with the energy balance caused by uptake of particles into the gut, thereby limiting

food uptake. Different types of engineered nanomaterials, as well as nanoplastics,

have been observed to adhere to the surface of microalgae, potentially causing a

physical shading effect on a cellular level [44]. Physical effects of microplastics on

marine organisms have been reviewed recently [45], and mechanisms that have

been described as potentially relevant include blockage of the digestive system,

abrasion of tissues, blockage of feeding appendages of invertebrates, embedment in

tissues, blockage of enzyme production, reduced feeding stimulus, nutrient dilution,

decreased growth rates, lower steroid hormone levels and impaired reproduction.

Table 1 presents an overview of effects in response to the physical particle prop-

erties that have been observed in different species.

The potential of microplastics to cause such physical effects on organisms

depends on a number of factors. Particles with a high capacity to accumulate in

Table 1 Examples of biological effects observed in aquatic organisms after exposure to

engineered nanoparticles or nano- and microplastics

Engineered nanoparticles Nano- and microplastics

Molecular/cellular level

Oxidative stressa

Inhibition of photosynthesis (shading)b
DNA damage and differential gene expressionl

Cellular stress response and impaired

metabolismm

Tissue level

Histopathological changesc

Transfer into cellsd
Tissue damagen

Transfer into tissueso

Organ/organismal level

Morphological malformatione

Decreased swimming velocitiesf

Increased mucus productiong

Toxic effects of released ionsh

Decreased growth rates and biomass

productioni

Moulting inhibitionj

Impaired mobilityk

Impaired respirationp

Impaired feedingq

Impaired development and reproductionr

Decreased growth rates and biomass productions

Behavioural changest

Increased mortalityu

aIn algae [46]; bin algae [47]; cin fish [48]; din algae [49]; ein fish embryos [50]; fin crustaceans

[51]; gin fish [52]; hin algae [53]; iin algae [7]; jin crustaceans [54]; kin crustaceans [51]; lin

echinoderms [55], bivalves [56–58] and fish [59]; min polychaetes [60], echinoderms [55],

bivalves [56–58, 61] and fish [62–64]; nin fish [59, 64, 65]; oin crustaceans [66], mussels

[67, 68] and fish [69]; pin polychaetes [70], crustaceans [71] and bivalves [72]; qin polychaetes

[60, 73], crustaceans [74, 75], bivalves [72, 76, 77] and fish [62]; rin crustaceans [74, 78, 79],

echinoderms [80], bivalves [58] and fish [81]; sin crustaceans [75, 79] and bivalves [72]; tin fish

[62, 81, 82]; uin crustaceans [75, 83], bivalves [72] and fish [84]
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organisms and translocate into tissues are expected to have a stronger physical

impact [45]. This is closely linked to particle size, as will be explained further

below. Shape also plays an important role since irregular, sharp fragments are more

likely to cause damage than round, smooth particles. Fibres are more likely to

accumulate in the digestive system. The capacity of individual species to egest

microplastics is also considered as an important factor because this process will

determine how long an organism is exposed to the particles [45].

For nanomaterials, size-dependent changes in effects are of particular interest.

The whole purpose of nanotechnology is to take advantage of the novel properties

that come with a smaller size. For engineered nanomaterials, this involves, for

example, the novel catalytic effects of some materials on the nanoscale including

gold (Au), titanium dioxide (TiO2) and cerium dioxide (CeO2). As larger-sized

(bulk) materials, these are relatively inert, but with decreasing particle size and

increasing surface area, they become reactive. Therefore, as particle size decreases,

there is a tendency for toxicity to increase, even if the same material is relatively

inert in its corresponding bulk (micron-sized) form [85]. In addition, the small size

of engineered nanomaterials may enable their uptake into tissues and cells

[49]. Observed biological effects of engineered nanomaterials in aquatic organisms

include oxidative stress, inhibition of photosynthesis, tissue damage, impaired

growth and development, behavioural changes and increased mortality (Table 1).

Similarly, the question for nano- and microplastics is therefore: Is it likely that a

decrease in size will make them more hazardous? To answer this question, we will

examine the two main causes for concern: novel properties and ingestion by

organisms (and potential subsequent transfer into tissues). The novel properties

that would occur for smaller-sized polymer particles are linked to their increased

surface-to-volume ratio. With decreasing particle size, a larger fraction of the

molecules will be present on the surface of the particle. As the surface is where

interactions with the surrounding environment take place, this can lead to an

increase in chemical reactions and biological interactions. For example, smaller

particles may (on a mass basis) have a larger adsorption capacity compared to larger

particles [86], which in turn is of relevance for the vector effects. The second

concern relates to the potential to cross biological barriers. Nanosized particles,

such as nanoplastics, are potentially more hazardous due to their easier uptake into

tissues and cells [2]. Depending on particle size, different uptake routes into

organisms are also involved. For example, the freshwater crustacean Daphnia
magna normally catches prey (mainly algae) in the size range 0.4–40 μm
[87, 88]. For particles or agglomerates that are within this size range, uptake can

occur through active filtration, and at the same time unwanted particles can be

rejected. Particles smaller than the preferred size are not actively taken up by the

animals, but may instead enter the organisms through ‘drinking’ of the surrounding
water, resulting in non-selective, uncontrolled uptake. Depending on the feeding

strategies of specific aquatic organisms and their ability to actively select their food

source, they may be able to regulate their uptake of microplastics, whereas

nanoplastics may enter the organisms unintentionally.
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5.1 Nano- and Microplastics in Standard Ecotoxicity Tests

In the quest to determine the environmental risk posed by nano- and microplastics,

laboratory-based experiments need to be carried out which analyse the effects of the

particles under well-defined conditions. The number of controlled laboratory stud-

ies investigating the effects of nano- and microplastics on freshwater organisms is

steadily increasing, and many different impacts have been observed – extending

from the molecular and cellular to the physiological level (see Table 1). These

include inflammation, disruption of lipid and amino acid metabolism, lower growth

rates, decreased feeding rates, behavioural changes, impairment of reproduction

and increased mortality [62, 64, 75, 79, 81, 82]. When studies involving marine

organisms are also taken into account, the number and variety of biological effects

of nano- and microplastics that have been found are even greater.

However, most effect studies differ greatly with respect to the parameters used,

for example, particle type (different polymers, sizes, shapes, presence of

chemicals), test species, exposure duration, exposure concentration and response

variables. This makes it difficult to compare results between studies and hampers

reproducibility. It can, therefore, be advantageous to apply standardised tests,

which come with a number of benefits as they ensure controlled and reproducible

test designs and inter-laboratory comparability. Another advantage of standardised

ecotoxicity tests is the extensive knowledge base resulting from decades of testing

the effects of chemicals on selected model organisms. For ecotoxicology of

nanomaterials, this has been highlighted as a motivation for using standardised

short-term tests as a starting point for gaining an insight into the fate and bioavail-

ability of engineered nanomaterials in the environment [89]. By using a well-

defined test system and a fully defined synthetic medium, other test parameters

can be varied individually and in a controlled manner, thereby providing an insight

into specific processes and mechanisms [90].

However, the use of standard test guidelines also comes with some potential

disadvantages, especially for testing of particles. For freshwater systems, a com-

monly used species is the freshwater flea Daphnia magna, for which the OECD has

developed two standard tests: an acute immobilisation test (48 h) (OECD TG 202)

and a chronic reproduction test (21 days) (OECD TG 211). These tests were

originally developed for soluble chemicals. Since particles show very different

behaviours to soluble chemicals, it is challenging to apply the same test set-ups.

Even so, some studies have used these standard tests to investigate the effects of

nano- and microplastics. Casado et al. [91] conducted an acute immobilisation test

with 55 and 110 nm polyethyleneimine PS beads and reported EC50 values of

0.8 mg/l and 0.7 mg/l, respectively. The same test with 1 μm PE beads resulted in an

EC50 value of 57.4 mg/l [83]. This huge difference could be a consequence of the

different polymer types and sizes used in the studies, but it might also indicate that

mortality is not a very sensitive biological response when it comes to plastic

particles. Finally, it may be indicative of a problem that has been highlighted for

tests with engineered nanomaterials: That reproducibility and data interpretation in
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standard ecotoxicity tests with particles, rather than soluble chemicals, are chal-

lenged by the dynamic nature of particles suspended in aqueous media [90]. Particle

properties and behaviour may change as a function of time or as a result of

interactions with test organisms and emitted biomolecules (e.g. exudates) [7]. It

has therefore been recognised as essential in the work with engineered nano-

materials to conduct a particle and exposure characterisation before and during a

laboratory test [26, 92]. This includes an analysis of the size, shape, surface area and

surface chemistry of the tested particle, as well as aggregation/agglomeration,

sedimentation and dissolution behaviour in the test system, thereby providing

information on exposure in both qualitative and quantitative terms. Furthermore,

appropriate ways of dispersing the particles in aquatic media have been highlighted

as an important area of future test method development [93]. The rationale behind

thorough characterisation and carefully considered sample preparation methods

relates to data interpretation and avoidance of the introduction of test artefacts.

Such activities are currently rarely undertaken in the work with nano- and micro-

plastics, but should be included in order to gain an insight into the behaviour of

the particles in exposure media and the resulting influence on their interaction with

test organisms.

Another aspect that needs to be taken into account is the leaching of molecules

from particles. For engineered nanomaterials, work is ongoing within the OECD to

develop test guidelines for investigating the dissolution of metal ions from metal-

containing nanomaterials [94]. In the case of plastic particles, the leaching of

chemicals from the polymer matrix (e.g. additives or monomers) and the release

of adhered co-pollutants can influence the test results. Appropriate test methods are

therefore needed to investigate the actual release of plastic additives from nano- and

microplastics under relevant conditions (media, temperature, pH, etc.), and a

control for the effects of chemicals and released additives or adhered pollutants

needs to be included as a reference.

Transformation processes, such as oxidation/reduction, interaction with macro-

molecules, light exposure and biological transformation, can significantly influence

the integrity, behaviour and persistence of nanomaterials in aquatic media [95–

97]. Depending on the specific conditions, dissolution and degradation can be

enhanced or reduced. Enhanced dissolution may result in increased toxicity of,

for example, metal and metal oxide nanomaterials. At the same time it may cause a

gradual decrease in particle size [97]. For nano- and microplastics, aging/

weathering processes should also be accounted for as they may change particle

properties (e.g. surface chemistry, polarity and density) and enhance fragmentation.

It should be emphasised that a complete degradation of plastic particles under

realistic environmental conditions has not yet been demonstrated [6, 98,

99]. While aging is potentially important for nanomaterials, and for nano- and

microplastics, in the environment, the relevant aging processes and kinetics may

differ. Based on current knowledge, nano- and microplastics may have a higher

core persistence and lower release of soluble compounds than certain engineered

nanomaterials (especially metal and metal oxide nanomaterials such as ZnO and

Ag). However, this is clearly an area of future research – for both nanomaterials and
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nano- and microplastics. Aging is currently not incorporated in standard ecotoxicity

test protocols, but has been proposed for engineered nanomaterials [100]. There are

also indications that aging of plastic particles can influence biological effects

[79]. This aspect should therefore generally be considered in the future develop-

ment of ecotoxicological tests for particle testing.

For test method developments, the field of ecotoxicity testing of nanomaterials

has benefitted from the availability of reference materials (e.g. NIST Standard

Reference Materials) and representative industrial nanomaterials (such as those

from the JRC Nanomaterials Repository). Such materials are valuable for analytical

method validation and for conducting comparable inter-laboratory and inter-species

studies. The field of ecotoxicity testing of nano- and microplastics would similarly

benefit from the establishment of sources of well-characterised, industrially and

environmentally relevant materials of various sizes and compositions.

The applicability of current standard ecotoxicity tests has been questioned for

engineered nanomaterials. Development of new test guidelines and guidance is

under discussion, for example, within the OECD [101]. The same concerns apply to

testing of nano- and microplastics: They represent a specific challenge due to their

dynamic nature in environmental media, resulting in, for example, differences in

relevant exposure routes (through food or other active uptake routes, grazing on

sedimented materials, etc.), as well as potentially different effect mechanisms.

Soluble molecules can be taken up into aquatic organism by diffusion and then

distributed within the organism based on partitioning, e.g. to lipid tissues. Cellular

uptake of soluble chemicals generally relates to passage of biological membranes,

mainly through passive diffusion or active uptake, such as transport through ion

channels or carrier-mediated transport [102]. In the tissues, they can act

non-specifically, leading to narcosis, or specifically by inhibiting or affecting

certain biological processes. In comparison, particle distribution is not governed

by diffusion and partitioning. Uptake of particles by organisms depends on mech-

anisms such as feeding rather than molecular diffusion. On a cellular level, particles

may be taken up through processes such as phagocytosis. Effects will therefore

most likely differ from those of soluble chemicals. An essential aspect is therefore

to determine sensitive biological endpoints for the exposure to particles, potentially

moving away from the current standard test organisms. A limited number of

response variables and test species can be seen as a disadvantage of standardised

tests. Based on the argument above, it may further be claimed that ‘no effect’ in a

standard test does not imply a lack of ecological impact of nano- and microplastics,

as these tests may not cover the most sensitive endpoints and test species for particle

exposure.

As mentioned, effects of microplastics have been observed on a molecular,

cellular and physiological level (see Table 1). When performing ecotoxicity testing,

the aim is to establish a dose-response relationship based on the underlying

assumption that effects are strongly dependent on exposure dose/concentration

and time. For engineered nanomaterials, however, an inverse relationship has

been observed between concentration and agglomerate size, meaning that with

higher particle concentrations, particles tend to form larger agglomerates
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[103]. High concentrations of engineered nanomaterials have also been linked to

effects that are not due to an actual toxic response, but rather caused by an over-

loading of the test organisms with engineered nanomaterials, causing physical inhi-

bition [8]. Testing of low, environmentally relevant particle concentrations during

short exposure times may, however, not be sufficient to detect effects when using

endpoints on a physiological level. Before an organism shows impairment to, for

example, its reproduction or survival, multiple changes must take place on a

cellular level. Cellular responses may therefore be more sensitive to microplastic

particle stress compared with whole-organism responses. On this level, however,

we are dealing with a complex network and huge number of reactions, which makes

it challenging to find and define a meaningful, reliable set of response variables. If

cellular responses are to be used as indicators of the potentially hazardous prop-

erties of nano- and microplastics, more research is needed to develop suitable

(standard) test methods. Another option for testing the toxicity of relatively low

concentrations of particles is chronic effect studies, as chronic endpoints can prove

more sensitive than acute ecotoxicity. An added benefit of testing lower concen-

trations is that particle agglomeration/aggregation is reduced, leading to more

stable exposure.

One major criticism of current nano- and microplastic ecotoxicity studies is their

lack of realism and environmental relevance when selecting test parameters

[104]. Pristine particles with a clearly defined, homogenous chemical composition

are most often applied in laboratory tests. This is in sharp contrast to the particles

present in the environment, which undergo transformation processes, potentially

influencing their morphology, and, in the case of plastic, often contain various

additives. This trade-off between environmental realism and standardised test

conditions is not a dilemma that is unique to testing of particles [105]. It should

be kept in mind that different testing paradigms inform different scientific and

regulatory questions. In standard ecotoxicity, applying simplified test systems and

often synthetic media, test parameters can more easily be controlled and modified

one by one in order to gain deeper insight into the mechanisms of toxicity and

particle uptake [89]. They are also developed to ensure data comparability and

study repeatability. For example, data generated following OECD Test Guidelines

and Good Laboratory Practice are considered to satisfy the criteria for Mutual

Acceptance of Data and can be used for regulatory assessment purposes in all

OECD member states, ideally minimising testing efforts and use of test animals

[106]. More environmentally realistic studies can, on the other hand, provide case-

and site-specific information on the effects of particle pollution under specific

environmental conditions. They may also provide more realistic information with

regard to the combined effects of multiple environmental stressors and their inter-

actions with plastic particles. Standard ecotoxicity tests and more environmentally

realistic studies should therefore be seen as complementary tools of

equal importance but potentially addressing different questions of scientific and

regulatory relevance.
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5.2 Detecting and Quantifying Particle Uptake
as a Prerequisite for Assessing the Effects of Nano-
and Microplastics

Research on the biological effects of nano- and microplastics is currently at the

stage of determining possible responses and thereby investigating the interactions

of organisms and plastic particles. For most organisms, there is a direct and obvious

link between the uptake of nano- and microplastics by ingestion or ventilation and

subsequent effects. Even so, knowledge on uptake itself is very limited, especially

when it comes to quantification of this process, since the detection of small plastic

particles is extremely challenging, as described earlier. Methods that have been

used to quantify particle uptake include counting using a microscope and spectros-

copy (Raman or FT-IR) of tissue samples. Furthermore, fluorescent particles are

used for image analysis of gut sections, fluorescence microscopy and the measure-

ment of fluorescence intensity of tissues as a proxy for the quantity of particles. All

these methods have limitations and are either very difficult to use on a large scale

(e.g. spectroscopy) or become increasingly challenged and even unusable with

smaller particles and lower particle numbers. This is major drawback since most

biological effects depend on the amount of plastic particles taken up into the

organism. A possible way forward could be the use of plastic particles with a

metal core which are easy to measure, even in small concentrations and sizes, by,

for example, mass spectroscopy – using the same techniques as for nanoparticles.

Such traceable nano- and microplastics do not reflect naturally occurring particles

as found in the environment, but they could serve as model particles for investi-

gating interactions of nano- and microplastics with biological systems. The tech-

nique could be used for precise quantification of particles as well as for localisation

in tissues. Nanoparticles with a gold core and a polymer coating have previously

been used in a number of studies, aimed at gaining an insight into the uptake of

engineered nanomaterials in fish and daphnids [107].

6 Lessons Learned. . . and the Way Ahead

When the ecotoxicology of nanomaterials emerged as a scientific field around a

decade ago, the already existing field of ‘colloidal science’ was somewhat over-

looked. Over the years, it has become increasingly clear that many parallels can be

drawn between the two fields. The links between particle behaviour, exposure and

ecotoxicological effects, as highlighted here, demonstrate the highly interdisciplin-

ary nature and complexity of this research field. Consequently, cooperation is

required between scientists with backgrounds in biology, chemistry and colloidal

science. Similarly, for studies of environmental behaviour and the effects of nano-

and microplastics, it is clearly important to draw on experience from ecotoxicology

of nanomaterials as well as colloidal science. This is the key to moving forwards
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towards an understanding of their potential environmental effects. This applies to

general scientific knowledge as well as ongoing work on developing appropriate

test methods that are applicable to the testing of particle pollutants rather than

soluble chemicals.

Based on experience within the field of engineered nanomaterials, we recom-

mend that the following aspects be considered in work with nano- and

microplastics:

• Development of clear, common definitions for plastic particle categorisation

• Thorough particle characterisation in exposure studies (including particle intrin-

sic properties, aggregation, agglomeration, sedimentation, dissolution, etc.)

• Inclusion of chemical leaching controls (monomers, additives, etc.)

• Development and use of reference materials for method validation and

comparison

• Development of protocols for ecotoxicity testing, sample preparation and ana-

lytical methods to minimise test artefacts

• Studies into the influence of environmental transformation processes (‘aging’)
on nano- and microplastic behaviour and ecotoxicity

• Development of analytical techniques that introduce minimal changes to the

plastic particles during sample preparation, provide information on several phy-

sicochemical parameters and can handle complex, heterogeneous samples.

While we should draw on the existing knowledge on engineered nanomaterials,

it is equally important to understand where the similarities begin and where they

end. In some respects, nano- and microplastics are likely to present different

environmental, analytical and methodological problems compared to engineered

nanomaterials, and this should be considered in the planning of experiments and in

making informed decisions regarding endpoints and tests of interest.

Finally, it is very important to understand the fundamental effect mechanisms

associated with nano- and microplastics: Which properties make them hazardous?

This is the way forwards towards replacing problematic plastic materials with safer

alternatives in consumer products and industrial applications. Such considerations

are important when discussing strategies for future plastic manufacturing,

minimising environmental risks and increasing the potential for plastic reuse and

recycling.
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