17 research outputs found

    Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    A measurement of charged-particle distributions sensitive to the properties of the underlying event is presented for an inclusive sample of events containing a Z-boson, decaying to an electron or muon pair. The measurement is based on data collected using the ATLAS detector at the LHC in proton–proton collisions at a centre-of-mass energy of 7 TeV with an integrated luminosity of 4.6 fb −Âč. Distributions of the charged particle multiplicity and of the charged particle transverse momentum are measured in regions of azimuthal angle defined with respect to the Z-boson direction. The measured distributions are compared to similar distributions measured in jet events, and to the predictions of various Monte Carlo generators implementing different underlying event models

    A measurement of the ratio of the production cross sections for W and Z bosons in association with jets with the ATLAS detector

    Get PDF
    The ratio of the production cross sections for W and Z bosons in association with jets has been measured in proton–proton collisions at √s=7TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is based on the entire 2011 dataset, corresponding to an integrated luminosity of 4.6fb−1. Inclusive and differential cross-section ratios for massive vector bosons decaying to electrons and muons are measured in association with jets with transverse momentum pT>30GeV and jet rapidity |y|<4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers

    Search for invisible particles produced in association with single-top-quarks in proton–proton collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for the production of single-top-quarks in association with missing energy is performed in proton– proton collisions at a centre-of-mass energy of √s = 8 TeV with the ATLAS experiment at the large hadron collider using data collected in 2012, corresponding to an integrated luminosity of 20.3 fb−1. In this search, the W boson from the top quark is required to decay into an electron or a muon and a neutrino. No deviation from the standard model prediction is observed, and upper limits are set on the production cross-section for resonant and non-resonant production of an invisible exotic state in association with a right-handed top quark. In the case of resonant production, for a spin-0 resonance with a mass of 500 GeV, an effective coupling strength above 0.15 is excluded at 95 % confidence level for the top quark and an invisible spin-1/2 state with mass between 0 and 100 GeV. In the case of non-resonant production, an effective coupling strength above 0.2 is excluded at 95 % confidence level for the top quark and an invisible spin-1 state with mass between 0 and 657 GeV

    Performance of the ATLAS muon trigger in pp collisions at [Formula: see text] TeV

    Get PDF
    The performance of the ATLAS muon trigger system is evaluated with proton-proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. It is primarily evaluated using events containing a pair of muons from the decay of [Formula: see text] bosons. The efficiency of the single-muon trigger is measured for muons with transverse momentum [Formula: see text] GeV, with a statistical uncertainty of less than 0.01 % and a systematic uncertainty of 0.6 %. The [Formula: see text] range for efficiency determination is extended by using muons from decays of [Formula: see text] mesons, [Formula: see text] bosons, and top quarks. The muon trigger shows highly uniform and stable performance. The performance is compared to the prediction of a detailed simulation

    Performance of the ATLAS muon trigger in pp collisions at root s=8 TeV

    Get PDF
    We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, ICORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZĆ , Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America

    Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector

    Get PDF
    This article reports on a search for dark matter pair production in association with bottom or top quarks in 20.3 fb−1^{-1} of pppp collisions collected at s=8\sqrt{s} = 8 TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing bb-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter--nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a coloured mediator suitable to explain a possible signal of annihilating dark matter.Comment: 10 pages plus author list + cover pages (25 pages total), 7 figures, 2 tables, submitted to Eur. Phys. J. C, All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2014-01

    Search for contact interactions and large extra dimensions in the dilepton channel using proton-proton collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search is conducted for non-resonant new phenomena in dielectron and dimuon final states, originating from either contact interactions or large extra spatial dimensions. The LHC 2012 proton-proton collision dataset recorded by the ATLAS detector is used, corresponding to 20 fb−1 at √s=8 TeV. The dilepton invariant mass spectrum is a discriminating variable in both searches, with the contact interaction search additionally utilizing the dilepton forward-backward asymmetry. No significant deviations from the Standard Model expectation are observed. Lower limits are set on the ℓℓqq contact interaction scale Λ between 15.4 TeV and 26.3 TeV, at the 95% credibility level. For large extra spatial dimensions, lower limits are set on the string scale MS between 3.2 TeV to 5.0 TeV

    Measurement of the production and lepton charge asymmetry of W bosons in Pb+Pb collisions at √sNN=2.76TeV with the ATLAS detector

    Get PDF
    A measurement of W boson production in lead-lead collisions at sNN=2.76TeV is presented. It is based on the analysis of data collected with the ATLAS detector at the LHC in 2011 corresponding to an integrated luminosity of 0.14 nb-1 and 0.15 nb-1 in the muon and electron decay channels, respectively. The differential production yields and lepton charge asymmetry are each measured as a function of the average number of participating nucleons ⟹Npart⟩ and absolute pseudorapidity of the charged lepton. The results are compared to predictions based on next-to-leading-order QCD calculations. These measurements are, in principle, sensitive to possible nuclear modifications to the parton distribution functions and also provide information on scaling of W boson production in multi-nucleon systems

    Characteristics of nanocrystalline diamond SGFETs under cell culture conditions

    Get PDF
    Characterization of electronic properties of protein diamond interface by using microscopic (20 ÎŒm) solution-gated field-effect transistors (SGFET) based on H-terminated nanocrystalline diamond films (NCD) on glass. We show that NCD films with grain sizes down to 80 nm and thickness down to 100 nm are operational as SGFETs

    Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    Get PDF
    This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb−1^{-1} of LHC proton--proton collision data taken at centre-of-mass energies of s\sqrt{s} = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the ZZ resonance is used to set the absolute energy scale. For electrons from ZZ decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV.Comment: 39 pages plus author list + cover pages (51 pages total), 42 figures, 8 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2013-05
    corecore