865 research outputs found
Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk
Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies (GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction algorithms-TargetScan and miRanda-to perform allele-specific queries, and integrated differential allelic expression (DAE) and expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant ( P≤5×10-8 ) raSNPs, plus proxies. We found that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk. Also, 11.5% (6 out of 52) raSNPs located in 3'-untranslated regions of putative miRNA target genes were predicted to alter miRNA::mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression, improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.Funding Agency
Portuguese Foundation for Science and Technology
CRESC ALGARVE 2020
European Union (EU)
303745
Maratona da Saude Award
DL 57/2016/CP1361/CT0042
SFRH/BPD/99502/2014
CBMR-UID/BIM/04773/2013
POCI-01-0145-FEDER-022184info:eu-repo/semantics/publishedVersio
Online Continual Learning on Sequences
Online continual learning (OCL) refers to the ability of a system to learn
over time from a continuous stream of data without having to revisit previously
encountered training samples. Learning continually in a single data pass is
crucial for agents and robots operating in changing environments and required
to acquire, fine-tune, and transfer increasingly complex representations from
non-i.i.d. input distributions. Machine learning models that address OCL must
alleviate \textit{catastrophic forgetting} in which hidden representations are
disrupted or completely overwritten when learning from streams of novel input.
In this chapter, we summarize and discuss recent deep learning models that
address OCL on sequential input through the use (and combination) of synaptic
regularization, structural plasticity, and experience replay. Different
implementations of replay have been proposed that alleviate catastrophic
forgetting in connectionists architectures via the re-occurrence of (latent
representations of) input sequences and that functionally resemble mechanisms
of hippocampal replay in the mammalian brain. Empirical evidence shows that
architectures endowed with experience replay typically outperform architectures
without in (online) incremental learning tasks.Comment: L. Oneto et al. (eds.), Recent Trends in Learning From Data, Studies
in Computational Intelligence 89
Phytochemicals as antibiotic alternatives to promote growth and enhance host health
There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin
Quantifying Risk Factors for Human Brucellosis in Rural Northern Tanzania
Brucellosis is a zoonosis of veterinary, public health and economic significance in most developing countries. Human brucellosis is a severely debilitating disease that requires prolonged treatment with a combination of antibiotics. The disease can result in permanent and disabling sequel, and results in considerable medical expenses in addition to loss of income due to loss of working hours. A study was conducted in Northern Tanzania to determine the risk factors for transmission of brucellosis to humans in Tanzania. This was a matched case-control study. Any patient with a positive result by a competitive ELISA (c-ELISA) test for brucellosis, and presenting to selected hospitals with at least two clinical features suggestive of brucellosis such as headache, recurrent or continuous fever, sweating, joint pain, joint swelling, general body malaise or backache, was defined as a case. For every case in a district, a corresponding control was traced and matched by sex using multistage cluster sampling. Other criteria for inclusion as a control included a negative c-ELISA test result and that the matched individual would present to hospital if falls sick. Multivariable analysis showed that brucellosis was associated with assisted parturition during abortion in cattle, sheep or goat. It was shown that individuals living in close proximity to other households had a higher risk of brucellosis. People who were of Christian religion were found to have a higher risk of brucellosis compared to other religions. The study concludes that assisting an aborting animal, proximity to neighborhoods, and Christianity were associated with brucellosis infection. There was no association between human brucellosis and Human Immunodeficiency Virus (HIV) serostatus. Protecting humans against contact with fluids and tissues during assisted parturition of livestock may be an important means of reducing the risk of transferring brucellosis from livestock to humans. These can be achieved through health education to the communities where brucellosis is common
Ethanol seeking triggered by environmental context is attenuated by blocking dopamine D1 receptors in the nucleus accumbens core and shell in rats
Conditioned behavioral responses to discrete drug-associated cues can be modulated by the environmental context in which those cues are experienced, a process that may facilitate relapse in humans. Rodent models of drug self-administration have been adapted to reveal the capacity of contexts to trigger drug seeking, thereby enabling neurobiological investigations of this effect.
We tested the hypothesis that dopamine transmission in the nucleus accumbens, a neural structure that mediates reinforcement, is necessary for context-induced reinstatement of responding for ethanol-associated cues.
Rats pressed one lever (active) for oral ethanol (0.1 ml; 10% v/v) in operant conditioning chambers distinguished by specific visual, olfactory, and tactile contextual stimuli. Ethanol delivery was paired with a discrete (4 s) light-noise stimulus. Responses on a second lever (inactive) were not reinforced. Behavior was then extinguished by withholding ethanol but not the discrete stimulus in a different context. Reinstatement, expressed as elevated responding for the discrete stimulus without ethanol delivery, was tested by placing rats into the prior self-administration context after administration of saline or the dopamine D1 receptor antagonist, SCH 23390 (0.006, 0.06, and 0.6 μg/side), into the nucleus accumbens core or shell.
Compared with extinction responding, active lever pressing in saline-pretreated rats was enhanced by placement into the prior ethanol self-administration context. SCH 23390 dose-dependently reduced reinstatement after infusion into the core or shell.
These findings suggest a critical role for dopamine acting via D1 receptors in the nucleus accumbens in the reinstatement of responding for ethanol cues triggered by placement into an ethanol-associated context
Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector
This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}4.6\;{\rm f}{{{\rm b}}^{-1}}{{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}|\eta |\lt 1.9{{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector
A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40
- …