7,072 research outputs found
A new polymorph of magnesium oxalate dihydrate
In the asymmetric unit of the title compound, catena-poly[[diaquamagnesium(II)]-μ-oxalato], [Mg(C2O4)(H2O)2]n, there is one Mg atom in an octahedral coordination with site symmetry 222, a unique C atom of the oxalate anion lying on a twofold axis, an O atom of the anion in a general position and a water O atom at a site with imposed twofold rotation symmetry. The Mg2+ ions are ligated by water molecules and bridged by the anions to form chains that are held together by O—H⋯O hydrogen bonds. The structure of the title compound has already been reported in a different space group [Lagier, Pezerat & Dubernat (1969 ▶). Rev. Chim. Miner.
6, 1081–1093; Levy, Perrotey & Visser (1971 ▶). Bull. Soc. Chim. Fr. pp. 757–761]
Hydroxysafflor Yellow A protects spinal cords from ischemia/reperfusion injury in rabbits
<p>Abstract</p> <p>Background</p> <p>Hydroxysafflor Yellow A (HSYA), which is one of the most important active ingredients of the Chinese herb <it>Carthamus tinctorius L</it>, is widely used in the treatment of cerebrovascular and cardiovascular diseases. However, the potential protective effect of HSYA in spinal cord ischemia/reperfusion (I/R) injury is still unknown.</p> <p>Methods</p> <p>Thirty-nine rabbits were randomly divided into three groups: sham group, I/R group and HSYA group. All animals were sacrificed after neurological evaluation with modified Tarlov criteria at the 48th hour after reperfusion, and the spinal cord segments (L4-6) were harvested for histopathological examination, biochemical analysis and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining.</p> <p>Results</p> <p>Neurological outcomes in HSYA group were slightly improved compared with those in I/R group. Histopathological analysis revealed that HSYA treatment attenuated I/R induced necrosis in spinal cords. Similarly, alleviated oxidative stress was indicated by decreased malondialdehyde (MDA) level and increased superoxide dismutase (SOD) activity after HSYA treatment. Moreover, as seen from TUNEL results, HSYA also protected neurons from I/R-induced apoptosis in rabbits.</p> <p>Conclusions</p> <p>These findings suggest that HSYA may protect spinal cords from I/R injury by alleviating oxidative stress and reducing neuronal apoptosis in rabbits.</p
The Hydration Structure at Yttria-Stabilized Cubic Zirconia (110)-Water Interface with Sub-Angstrom Resolution
The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5&#8201;&Aring; resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species. Above this top surface layer, two additional adsorbed layers are observed forming a characteristic interfacial hydration structure. The first adsorbed layer shows abnormally high density as pure water and likely includes metal species, whereas the second layer consists of pure water. The observed interfacial hydration structure seems responsible for local equilibration of the defective surface in water and eventually regulating the long-term degradation processes. The multitude of water interactions with the zirconia surface results in the complex but highly ordered interfacial structure constituting the reaction front.ope
Effects of TGF-β1 and IGF-1 on proliferation of human nucleus pulposus cells in medium with different serum concentrations
BACKGROUND: The low proliferative viability of human nucleus pulposus(NP) cells is considered as a cause of intervertebral discs degeneration. Growth factors, such as TGF-β1 and IGF-1, have been implicated in cell proliferation and matrix synthesis. OBJECTIVE: To investigate the dose-response and time-course effect of transforming growth factorβ1(TGF-β1) and insulin-like growth factor-1(IGF-1) on proliferation of NP cells. STUDY DESIGN: 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) is reduced by dehydrogenase in mitochondria of live cells. The proliferative viability of cells corresponds to the amount of MTT reduced, which is measured with an enzyme-linked immunosorbent assay plate reader. In this study, we assessed dose- and time-dependent effects of NP cells to TGF-β1 and IGF-1 in medium with different serum concentrations by MTT assay. METHODS: After release of informed consent, tissue samples of NP were obtained from anterior surgical procedures performed on five donors with idiopathic scoliosis. Isolated cells were cultured in F12 medium supplemented with 10% fetal bovine serum(FBS). Cells were seeded in 96-well plates at 1 × 10(3 )cells/well. After synchronization, medium was replaced by F12 containing 1% or 10% FBS with either single or combination of TGF-β1 and IGF-1. Dose-response and time-course effect were examined by MTT assay. RESULTS: In the presence of 1% FBS, the response to IGF-1 was less striking, whereas TGF-β1 had a remarkably stimulating effect on cell proliferation. In 10% FBS, both of the two growth factors had statistical significant mitogenic effects, especially TGF-β1. The dose-dependent effect of TGF and IGF on cell proliferation was found within different concentrations of each growth factor(TGF-β1 1–10 μg/L, IGF-1 10–100 μg/L). The time-course effect showed a significant elevation three days later. CONCLUSION: TGF-β1 and IGF-1 were efficient to stimulate cell proliferation of human NP cells in vitro with a dose- and time-dependent manner. These results support the therapeutic potentials of the two growth factors in the treatment of disc degeneration
Mental health status of late-middle-aged adults in China during the Coronavirus Disease 2019 Pandemic
Background: The novel coronavirus 2019 (COVID-19) pandemic and related compulsory measures have triggered a wide range of psychological issues. However, the effect of COVID-19 on mental health in late-middle-aged adults remains unclear.
Methods: This cross-sectional, web-based survey recruited 3,730 participants (≥ 50 years old) between February 28 and March 11 of 2020. The Patient Health Questionnaire-9, Generalized Anxiety Disorder-7, Insomnia Severity Index, and Acute Stress Disorder Scale were used to evaluate depression, anxiety, insomnia, and acute stress symptoms. Multivariate logistic regression analysis was fitted to explore risk factors that were associated with the selected outcomes.
Results: The mean age of the participants was 54.44 ± 5.99 years, and 2,026 (54.3%) of the participants were female. The prevalence of depression, anxiety, insomnia, and acute stress symptoms among late-middle-aged adults in China during the COVID-19 pandemic was 20.4, 27.1, 27.5, and 21.2%, respectively. Multivariable logistic regression analyses showed that participants who were quarantined had increased odds ratios for the four mental health symptoms, and those with a good understanding of the COVID-19 pandemic displayed a decreased risk for all mental health symptoms among late-middle-aged adults. In addition, participants with a low income and with a risk of COVID-19 exposure at work had a remarkably high risk of depression, anxiety, and acute stress symptoms.
Conclusions: Mental health symptoms in late-middle-aged adults in China during the COVID-19 pandemic are prevalent. Population-specific mental health interventions should be developed to improve mental health outcomes in late-middle-aged adults during this public health emergency
Integrating transposable elements in the 3D genome
Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
Broad targeting of resistance to apoptosis in cancer
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV
The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3
magnetic muon spectrometer for zenith angles ranging from 0 degree to 58
degree. Due to the large exposure of about 150 m2 sr d, and the excellent
momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in
the vertical direction is achieved.
The ratio of positive to negative muons is studied between 20 GeV and 500
GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003
(stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure
- …