531 research outputs found

    High-sensitivity detection of narrowband light in a more intense broadband background using coherence interferogram phase

    Get PDF
    This paper describes an optical interferometric detection technique,. known as the interferogram phase step shift, which detects narrowband, coherent, and partially coherent light in more intense broadband incoherent background light using changes in the phase gradient with the optical path difference of the coherence interferograin to distinguish the bandwidth or coherence of the signal from that of the background. The detection sensitivity is assessed experimentally by measuring the smallest signal-to-background ratio or signal-to-clutter ratio (SCR), which causes a detectable change in the self-coherence interferograin phase. This minimum detectable SCR (MDSCR) is measured for the multimode He-Ne laser, resonant-cavity light-emitting diode (LED), narrowband-filtered white light, and LED signal sources in a more intense tungsten-halogen-lamp white-light background. The highest MDSCRs to date, to the authors' knowledge, are -46.42 dB for coherent light and -31.96 dB for partially coherent light, which exceed those of existing automatic single-domain techniques by 18.97 and 4.51 dB with system input dynamic ranges of 19.24 and 11.39 dB, respectively. The sensitivity dependence on the signal-to-system bandwidth ratio and on the relative offset of their central wavelengths is also assessed, and optimum values are identified

    Detection of coherent light in an incoherent background

    Get PDF
    The change in position of the self-coherence function minimum is used to detect the presence of a coherent source, rather than the change in strength of the self-coherence function at the reference path difference. The system uses both optical and digital signal processing with MATLAB algorithm. An experimental system was built in the visible band, employing a Michelson interferometer, an interference filter centered in the red, and a silicon photodetector. The results were averaged over up to 50 scans, depending on the relative visibility of the white light and laser fringes, to reduce the scan to scan variability. Amplifier gain was introduced to reduce quantization noise

    Variable numerical-aperture temporal-coherence measurement of resonant-cavity LEDs

    Get PDF
    The first interferometric measurements of temporal-coherence length variation with numerical aperture (NA) are described for 650 nm, resonant-cavity light-emitting diodes (LEDs) agreeing with spectrally derived results. The interferometrically measured coherence length (22 mum to 32 mum) reduced by 37% for a 0.42 increase in NA. For a larger range of NA (0-1), this would give coherence lengths (10 mum-40 mum) lying in the gap between that of conventional LEDs (similar to5 mum) and superluminescent diodes (similar to60 mum)

    Genome-wide signatures of complex introgression and adaptive evolution in the big cats.

    Get PDF
    The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages

    Bioactive Compounds as Potential Agents for Sexually Transmitted Diseases Management: A Review to Explore Molecular Mechanisms of Action

    Get PDF
    Sexually transmitted diseases (STDs) are produced by pathogens like bacteria, fungi, parasites, and viruses, and may generate severe health problems such as cancer, ulcers, and even problems in the newborn. This narrative review aims to present updated information about the use of natural bioactive compounds for the prevention and treatment of sexually transmitted infections. A search of the literature was performed using databases and search engines such as PubMed, Scopus, Google Scholar and Science Direct. From the pharmacotherapeutic management point of view, any strategies for prevention should contain medical approaches. The bioactive compounds obtained from natural products have shown biological effects against different microorganisms for the treatment of these diseases. The main results showed antimicrobial, antiprotozoal, antifungal and antiviral effects such as HIV. Also, the molecular mechanisms, signalling pathways and action targets of natural compounds were highlighted, thus justifying bacterial and antifungal inhibition, apoptosis or reduction of viral replication. From the data of our study, we can conclude that natural compounds may be a significant source for adjuvant drugs / complementary therapies in the treatment of STDs. With all these benefits, the future must conduct extensive clinical trials and the development of pharmaceutical nanotechnologies for a greater therapeutic effect.This work was supported by CONICYT PIA/APOYO CCTE AFB170007. The project is supported under the program of the Minister of Science and Higher Education under the name “Regional Initiative of Excellence” in 2019–2022 project number: 024/RID/2018/19 and by Medical University of Lublin, Poland, University Grant number: DS 07/2021. This study partially supported by Canakkale Onsekiz Mart University (Scientific Research Projects, ID: FYL-2017–1339 and FBA-2017–1268)

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques
    • 

    corecore