411 research outputs found

    Quasiparticle Interactions in Fractional Quantum Hall Systems: Justification of Different Hierarchy Schemes

    Full text link
    The pseudopotentials describing the interactions of quasiparticles in fractional quantum Hall (FQH) states are studied. Rules for the identification of incompressible quantum fluid ground states are found, based upon the form of the pseudopotentials. States belonging to the Jain sequence nu=n/(1+2pn), where n and p are integers, appear to be the only incompressible states in the thermodynamic limit, although other FQH hierarchy states occur for finite size systems. This explains the success of the composite Fermion picture.Comment: RevTeX, 10 pages, 7 EPS figures, submitted fo Phys.Rev.

    Integer quantum Hall effect for hard-core bosons and a failure of bosonic Chern-Simons mean-field theories for electrons at half-filled Landau level

    Get PDF
    Field-theoretical methods have been shown to be useful in constructing simple effective theories for two-dimensional (2D) systems. These effective theories are usually studied by perturbing around a mean-field approximation, so the question whether such an approximation is meaningful arises immediately. We here study 2D interacting electrons in a half-filled Landau level mapped onto interacting hard-core bosons in a magnetic field. We argue that an interacting hard-core boson system in a uniform external field such that there is one flux quantum per particle (unit filling) exhibits an integer quantum Hall effect. As a consequence, the mean-field approximation for mapping electrons at half-filling to a boson system at integer filling fails.Comment: 13 pages latex with revtex. To be published in Phys. Rev.

    Hamiltonian Description of Composite Fermions: Magnetoexciton Dispersions

    Full text link
    A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in Fractional Quantum Hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=1/3\nu=1/3, 2/5, and 3/7 gapped fractions, and find approximate agreement with numerical results. I also analyse the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 2/5 and 3/7, and it is shown that the spin-polarized 2/5 state, in contrast to the spin-polarized 1/3 state, cannot be described as a simple quantum ferromagnet.Comment: 18 pages, 18 encapsulated ps figure

    Characterisation of a major phytoplankton bloom in the River Thames (UK) using flow cytometry and high performance liquid chromatography

    Get PDF
    Recent river studies have observed rapid phytoplankton dynamics, driven by diurnal cycling and short-term responses to storm events, highlighting the need to adopt new high-frequency characterisation methods to understand these complex ecological systems. This study utilised two such analytical methods; pigment analysis by high performance liquid chromatography (HPLC) and cell counting by flow cytometry (FCM), alongside traditional chlorophyll spectrophotometry and light microscopy screening, to characterise the major phytoplankton bloom of 2015 in the River Thames, UK. All analytical techniques observed a rapid increase in chlorophyll a concentration and cell abundances from March to early June, caused primarily by a diatom bloom. Light microscopy identified a shift from pennate to centric diatoms during this period. The initial diatom bloom coincided with increased HPLC peridinin concentrations, indicating the presence of dinoflagellates which were likely to be consuming the diatom population. The diatom bloom declined rapidly in early June, coinciding with a storm event. There were low chlorophyll a concentrations (by both HPLC and spectrophotometric methods) throughout July and August, implying low biomass and phytoplankton activity.However, FCM revealed high abundances of pico-chlorophytes and cyanobacteria through July and August, showing that phytoplankton communities remain active and abundant throughout the summer period. In combination, these techniques are able to simultaneously characterise a wider range of phytoplankton groups, with greater certainty, and provide improved understanding of phytoplankton functioning (e.g. production of UV inhibiting pigments by cyanobacteria in response to high light levels) and ecological status (through examination of pigment degradation products). Combined HPLC and FCM analyses offer rapid and cost-effective characterisation of phytoplankton communities at appropriate timescales. This will allow a more-targeted use of light microscopy to capture phytoplankton peaks or to investigate periods of rapid community succession. This will lead to greater system understanding of phytoplankton succession in response to biogeochemical drivers

    Integrating group Delphi, fuzzy logic and expert systems for marketing strategy development:the hybridisation and its effectiveness

    Get PDF
    A hybrid approach for integrating group Delphi, fuzzy logic and expert systems for developing marketing strategies is proposed in this paper. Within this approach, the group Delphi method is employed to help groups of managers undertake SWOT analysis. Fuzzy logic is applied to fuzzify the results of SWOT analysis. Expert systems are utilised to formulate marketing strategies based upon the fuzzified strategic inputs. In addition, guidelines are also provided to help users link the hybrid approach with managerial judgement and intuition. The effectiveness of the hybrid approach has been validated with MBA and MA marketing students. It is concluded that the hybrid approach is more effective in terms of decision confidence, group consensus, helping to understand strategic factors, helping strategic thinking, and coupling analysis with judgement, etc

    COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing

    Get PDF
    Background Lateral flow device (LFD) viral antigen immunoassays have been developed around the world as diagnostic tests for SARS-CoV-2 infection. They have been proposed to deliver an infrastructure-light, cost-economical solution giving results within half an hour. Methods LFDs were initially reviewed by a Department of Health and Social Care team, part of the UK government, from which 64 were selected for further evaluation from 1st August to 15th December 2020. Standardised laboratory evaluations, and for those that met the published criteria, field testing in the Falcon-C19 research study and UK pilots were performed (UK COVID-19 testing centres, hospital, schools, armed forces). Findings 4/64 LFDs so far have desirable performance characteristics (orient Gene, Deepblue, Abbott and Innova SARS-CoV-2 Antigen Rapid Qualitative Test). All these LFDs have a viral antigen detection of >90% at 100,000 RNA copies/ml. 8951 Innova LFD tests were performed with a kit failure rate of 5.6% (502/8951, 95% CI: 5.1–6.1), false positive rate of 0.32% (22/6954, 95% CI: 0.20–0.48). Viral antigen detection/sensitivity across the sampling cohort when performed by laboratory scientists was 78.8% (156/198, 95% CI 72.4–84.3). Interpretation Our results suggest LFDs have promising performance characteristics for mass population testing and can be used to identify infectious positive individuals. The Innova LFD shows good viral antigen detection/sensitivity with excellent specificity, although kit failure rates and the impact of training are potential issues. These results support the expanded evaluation of LFDs, and assessment of greater access to testing on COVID-19 transmission. Funding Department of Health and Social Care. University of Oxford. Public Health England Porton Down, Manchester University NHS Foundation Trust, National Institute of Health Research

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    Search for H→γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector

    Get PDF
    A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−14.5 fb−1 of proton–proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter
    corecore