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Integer quantum Hall efFect for hard-core bosons
and a failure of bosonic Chem-Simons mean-field theories

for electrons at a half-filled Landau level

O. Heinonen and M. D. Johnson
Department of Physics, University of CentraL Florida, Orlando, Florida $88j6-2885

(Received 26 April 1995)

Field-theoretical methods have been shown to be useful in constructing simple e8'ective theories
for two-dimensional (2D) systems. These efFective theories are usually studied by perturbing around
a mean-field approximation, so the question as to whether such an approximation is meaningful
arises immediately. We here study 2D interacting electrons in a half-filled Landau level mapped
onto interacting hard-core bosons in a magnetic field. We argue that an interacting hard-core
boson system in a uniform external field such that there is one fiux quantum per particle (unit
filling) exhibits an integer quantum Hall efFect. As a consequence, the mean-field approximation for
mapping electrons at half-filling to a boson system at integer filling fails.

Chem-Simons (CS) field-theoretical approaches to the
fractional (and integer) quantuin Hall effect (FICHE and
I@HE, respectively) developed recentlyi provide sim-
ple eB'ective theories for electron FICHE and I@HE sys-
tems. In these approaches, the physical electron system
is mapped by a singular gauge transformation onto an
equivalent system of fermions or bosons interacting with
a statistical CS gauge field. The equivalent system is
then typically studied by Grst introducing a mean-field
approximation, in which the particles experience a con-
stant net field, which is the sum of the external Geld and
the average CS Geld, and then by perturbing around this
mean-Geld approximation. Since the CS Geld is singu-
lar, it may at first seem surprising that the rather crude
mean-field approximation makes sense at all, and it is
essential to understand when this approximation works,
i.e., when perturbation about the mean Geld converges to
the physical system, or at least gives physical results, and
when it breaks down. The key to the success of the mean-
Geld approximation as a suitable starting point seems to
be when both the physical electron system and the equiv-
alent CS system have energy gaps. At the very least, per-
turbation about the mean field then makes sense, since
the energy gap suppresses fluctuations about the mean
field, although there is no guarantee that perturbation
theory converges to the physical system. When both the
physical system and the equivalent CS system are gap-
less, sensible results can be obtained from the mean-Geld
approximation, although infrared divergences may show
up and some renormalization scheme has to be devised.
The purpose of this paper is to add to our understanding
of the applicability of CS theories by giving an example
for which we argue that the mean-Geld approximation
is not a suitable starting point at all: a half-filled Lan-
dau level mapped onto CS interacting hard-core bosons
at one flied Landau level. For this case, we will argue
that perturbation theory about the mean Geld does not
converge to the physical system at all. This is because

the mean-field approximation describes a system of in-
teracting hard-core bosons at integer filling. Jain and
Rao3 have recently suggested that noninteracting bosons
at v = 1 have an energy gap and exhibit an integer quan-
tum Hall efFect, and we argue that this holds for inter-
acting hard-core bosons. This gap remains to all orders
in perturbation theory, while the real electron system is
gapless.

Jain has recently shown that mapping the electron
system onto CS fermions provides a natural way to study
the FICHE. In this mapping, one starts with a system of
two-dimensional (2D) electrons of density n in an exter-
nal Geld A„such that the filing factor v = 2mnX~&

p/(2np + 1), with B~ = e~ g8 Ap and the magnetic
length /&2 ——c/(eB), and p and n integers. (We will
use units in which h = c = 1 and notation in which
Greek indices denote time and space dimension, and Ro-
man indices denote space dimension with an implicit Qat
Minkowski metric g„. Summation over Greek indices
will be implied unless stated otherwise. ) One then per-
forms a singular gauge transformation by attaching flux
tubes with an even number 2n of Aux quanta to each elec-
tron, which transforms the system into an equivalent one
of fermions in an external field A„plus the Chem-Simons
field a~ &om the Aux tubes. The resulting equivalent
system can then be studied by starting with a mean-
field approximation (the saddle-point approximation in
a Lagrangian formulation), in which external and sta-
tistical magnetic fields are taken to be uniform at their
spatial average. The mean-field system thus consists of
fermions in an average magnetic Geld at integer filling
v = p. Fluctuations in the statistical field can then be
added, for example, within a random-phase approxima-
tion in a Hamiltonian formulation, or the equivalent one-
loop approximation in a Lagrangian formulation by ex-
panding the fields up to second order about the saddle
point and then integrating out the fermion Gelds. It is
expected that perturbation theory, such as the one-loop
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expansion, about the saddle point in this case gives a
good description of the low-lying excitations of the real
system (except for the magnetoroton minimum). The
reason is that the saddle-point approximation describes
an I@HE system, which has an energy gap. This gap is
the cyclotron energy of the net average magnetic field,
which has contributions from the average statistical field
and the external field. One can then formally integrate
out the high-energy modes to obtain an effective the-
ory of a massive fermion field coupled to a CS Geld. It
is well known that the statistical parameter (the topo-
logical mass term) of a Chem-Simons field coupled to a
massive scalar or spinor Geld does not renormalize be-
yond the one-loop level, at which level it receives at the
most a small correction. Therefore, the energy gap re-
mains nonzero and finite to all orders in perturbation
theory. Furthermore, topological theorems for the Hall
conductivity ensure that the statistical parameter does
not renormalize at all for I@HE and FICHE systems, so
that the incompressible system indeed has a quantized
Hall conductivity. Note that it is crucial that the aver-
age magnetic field at the saddle-point; approximation is
not entirely due to the statistical field itself —if this were
the case, the one-loop approximation would give rise to
a compressible system due to exact cancellation between
the Hall conductivity of the CS fermions in the constant
average field and the statistical parameter of the CS term
in the Lagrangian. This is precisely the case for anyon
superconductors, where one starts with anyons in no
external field and transform to CS fermions or hard-core
bosons in a net Geld due entirely to the CS field.

On the other hand, an FICHE system can be mapped
onto a system of hard-core CS bosons ' by performing a
singular gauge transformation which attaches flux tubes
with an odd number (2p + 1) of fiux quanta to the elec-
trons. At the mean-field level, one then has a boson sys-
tem in a uniform magnetic field. In general, such a sys-
tem is compressible and contains vortices, which are the
locations where the boson order parameter vanishes, and
these generate an additional gauge fieM, which has to be
included. io ii However, at special fillings v = 1/(2p+ 1),
i.e., such that the average magnetic field precisely van-
ishes (the average Chem-Simons gauge field precisely
cancels the external gauge field), there are no vortices
and the boson system is in fact incompressible (see be-
low). In this case, the average vortex density vanishesio
and the vortices acquire a finite mass. One can proceed
to formally integrate out the Bose fields, and assume
that the statistical parameter of the CS term does not
renormalize. The result is an effective Lagrangian for
the fluctuations in the CS field with only massive modes
and a quantized Hall conductance. This nontrivial result
has also been obtained rigorously by Read starting with
the Laughlin FICHE wave functions. The reason that the
statistical paraineter does not renorrnalize (even though
the mean-field approximation describes a system of hard-
core bosons in zero magnetic Geld, which one would think
is gapless) is that the FICHE states have broken U(1)
symmetry described by off-diagonal lang-range order in
a charged Bose field P (the Bose field condenses into a su-
perfluid). The massless Goldstone mode that appears in

the broken-symmetry phase due to phase fluctuations in
the ord.er parameter vanishes by the standard Anderson-
Higgs mechanism when the system is coupled to the CS
statistical Geld. Therefore, the effective CS Lagrangian
has only massive modes.

Recently, electron systems at half filling, v = 1/2, have
been studied experimentally and theoretically. Ex-
perimentally, these systems are gapless metals and show
a finite longitudinal resistivity p with a sharp minimum
as a function of filling factor precisely at v = 1/2, while
the Hall resistivity p „ is not quantized but rather shows
its classical form p „B/(nec). Careful experiments
indicatei2' 4 that in the presence of disorder, v = 1/2
is the critical point for a transition between an incom-
pressible quantum Hall fluid and a weakly localized An-
derson insulator. Theoretically, v = 1/2 has been stud-
ied by mapping the electrons onto CS fermions in zero
average field, ' ' as well as by other more traditional
approaches. Kalmeyr and Zhang showed that within
the CS theory, disorder in the effective system of 2D CS
fermions in zero average magnetic field leads to density
fluctuations that couple to fluctuations in the statistical
field. This results in a fluctuating net magnetic Geld that
breaks the time-reversal invariance responsible for weak
localization in two dimensions, and the system shows a
metallic conductivity. In a very comprehensive and cre-
ative work, Halperin, Lee, and Read investigated inter-
acting CS fermions in zero average magnetic field, with
or without weak disorder. Under the assumption that
the system exhibits a Fermi surface at the mean-Geld
level, they went on to study the effective-mass renormal-
ization, in addition to various experimental signatures.
Even though infrared divergences at the one-loop level
for short-range interactions lead to infinite renormaliza-
tion of the effective mass, while Coulomb interactions
lead to logarithmic corrections, they argued that the the-
ory is renormalizable and that the interacting system is
Fermi-liquid-like (or is a marginal Fermi liquid). This has
recently been demonstrated in first-principles numerical
calculations by Rezayi and Read, and there is also re-
cent experimental evidence of a Fermi surface. 7 It is
clear that for this system, perturbation theory about the
mean-field system has to be done with extreme care —at
the mean-field level, the system is gapless (even though it
is incompressible for Coulomb interactions2) and there is
nothing that can guarantee the stability of the one-loop
approximation and. zero renormalization of the statisti-
cal parameter beyond the one-loop level. Therefore, one
can expect heavy, perhaps infinite, renormalization of all
physical parameters, including the statistical parameter.

We will here study interacting electrons at v = 1/2 in
zero or weak disorder by mapping the system onto a sys-
tem of CS hard-core bosons at filling v = 1 by attaching
a flux tube of one flux quantum to each electron. At the
saddle point, this is then a system of hard-core bosons at
filling v = 1. Jain and Rao have recently argued that
noninteracting hard-core bosons exhibit a v = 1 I@HE
in the thermodynamic limit. We will here argue that
this holds when interactions are included. As a conse-
quence, perturbation theory to infinite order about the
saddle point is renormalizable and converges, but not to
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the physical system. We argue that this is due to the non-
analyticity of the true ground-state wave function, while
the mean-field wave function is analytical and outside the
radius of convergence of perturbation theory about the

true ground state.
We start with a system of 2D electrons at half filling

v = 1/2 in the external field A„. The system is described
by the action

drat ~rt i6o —eAO —p, rt — rt —iV —eA rt
2m

d r dt d r' ddt' Igt(r, t)Q(r, t) —no V(~r —r'~) gt(r', t')Q(r', t') —n()

where no is the average density; 2vrnoE& ——v = 1/2. By performing a singular gauge transformation that attaches a
Aux quantum to each electron we obtain the Bose action

d r dt r t 6O —eAO —eao —p, r t — t r t —iV' —eA —ea r t
2m

(t t(r, t)y(r, t) —no V(~r —r'~) (t t(r', t')(t(r', t') —no] +
2

Oe2
&~vAayfo A. (2)pv p

Here, the CS GeM a~ is given by

() = —
2„0,

with 0 = 1/(2a). We change to the Euclidean imaginary-time action

d r d~ t r ~ 8 —eAO —eao —p r ~ + r7 —i%' —eA —ea r w
2m

d r d7dr'r .Pt(r, w)P(r, w) —n()] V(~r —r'~) Pt(r', 7.)P(r', ~) —n()] + d r dw e„„pa„f g

and consider the partition function

Z = 'V *P 'Va„exp —S

S,a(a'„) = 0 2

r( r dr —[a'„]*IIa a' i oa ofa „j,'p pv v 4 pv p, v

(8)

where the path integrals are to be understood as
coherent-states path integrals. We proceed by formally
integrating out the Bose fields with the CS fields a~ Gxed
near their saddle-point values a„, V x ao = —27(no/e, to
obtain the partition function

&o(a„)f&a, oap [—+co(a,)]

Here, Scs(a„) is the Euclidean Chem-Simons action.
Next, we expand the fields a~ up to quadratic order about
their saddle-point values a . The result is an efFective
partition function Z, (r(ao ):

&.a(ao„) = Zo(ao) fVa'„oxp —S.a(a'„)]

The efFective action S,(r(a' ) describes the quadratic fluc-
tuations of the CS 6eld in a medium of hard-core bosons
at a Gxed magnetic Geld v = 1 and is given formally by

where II„ is the current-current correlation function of
the interacting hard-core boson system at v = 1,

II„„(r,t;r', t') = (j„(r,t)j (r', t')).

In general, II„ is very complicated and describes prop-
erties such as the dielectric function, magnetic suscepti-
bility, and Hall conductivity o. „, and we do not know
much at all about II„„.Except, as we now argue, that
this Bose system has an energy gap and that its Hall
conductivity is quantized at 00„= e2/(4n). Jain and
Rao have recently suggested that noninteracting hard-
core bosons may exhibit I@HE at v = 1 in the ther
modynamic limit. This may seem surprising, for the
following reason. Decompose the interaction potential
V(r —r') in relative angular momentum (RAM) com-
ponents, the strength of which is given by the pseu-
dopotential parameters Vo, V2, ...., where V2 denotes the
interaction energy of two bosons with RAM 2n. Note
that the total wave function is even under interchange of
two bosons, so that no two bosons can have odd RAM.
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The parameter Vo describes the hard-core interaction,
since the zero RAM channel is the only one that allows
the bosons to be at the same place. We assume that
Vo )) M &) V2 & V4 &. . . In the Vo approximation,
we can construct a Jastrow wave function in which all
bosons avoid zero RAM. With all bosons in the lowest
Landau level, we must have v ( 1/2 in order to avoid
RAM 0. By occupying the next Landau level, we can
reach fillings v ( 2/3 and avoiding RAM 0, and so on.
Simple trial wave functions corresponding to these fillings
can be constructed by starting with the wave functions
for noninteracting electrons at v = p and by multiplying
the wave function by the Jastrow factor Q(z, —z~). This
generates hard-core boson FQHE at fillings v = p/(@+1),
with v = 1 as an accumulation point, similar to v = 1/2
for electrons. Consequently, one does not expect a boson
QHE at v = 1. However, as v ~ 1 in this construction,
there is a Gnite fraction of particles in all Landau levels,
and the energy cost becomes very large. Jain and Rao
suggested instead another variational scheme for boson
wave functions, in which the wave function is obtained
from the product of two fermion wave functions @„and
4„,each of which describes p and p' filled electron Lan-
dau levels, respectively. For the case of noninteracting
hard-core bosons at v = 1 the boson wave function C i is
then constructed from two fermion wave functions for the
filled two lowest Landau levels. The fermion wave func-
tion for the two filled Landau levels can be written @2 ——

f2([z, z+]) exp —g, ~z;~ /4 . Here, fz([z, zv]) is an anti-
symmetric polynomial in the coordinates z, = x,. + iy, ,
and [z, zw] denotes the collections (z;) and (z,*). The re-
sulting boson wave function @i ——fz exp —P, ~z,

~
/4

at the very least gives a rigorous upper bound to the
ground-state energy of bosons at v = 1, which is much
lower than the previous one. Although we have no formal
proof, we will assume that 4q is in fact the lowest-energy
wave function at v = 1 that avoids RAM 0. This as-
sumption can be supported by the following argument.
From the single-particle Landau level lowering operator
a = 1/~2 (z/2+ 28/Oz*) and angular momentum low-

ering operator b = 1//2 (z*/2+ 28/Bz) (we are using
the symmetric gauge) we construct many-body Landau
level lowering and angular momentum lowering opera-
tars A = P, a, and B = P, 6, acting on the many-body
wave functions. A straightforward calculation then yields
A.C q

——B@q ——0. This is because both operators act
as derivative operators on f2, which by construction is
the square of the polynomial part of an electronic wave
function of two flied Landau levels. The net effect is
then the same as having two Landau levels filled with
electrons and attempting to lower the total angular mo-
mentum or to send all electrons to a lower I andau level,
both of which give zero. We conclude that 4'~ cannot be
obtained by operating with any analytic function of At
and Bt on some other wave function, and so is a good
candidate for the ground state.

Within this variational scheme the state 4q has an en-
ergy gap of order her, and so describes an IQHE. This
ground state and its energy gap are robust under adia-
batic turning-on of a Gnite number of RAM components

V2„since Lo && V2 . Using arguments due to Laughlin
and Halperin, it is straightforward to demonstrate that
this IQHE survives weak disorder, and that cr „ is quan-
tized at cr „= e /(2'). As a consequence of this, the
effective statistical parameter 0 ~ becomes

or

1 1 1
0 +

0 ~ o0„0

2

4'

The energy gap at the saddle-point approximation en-
sures that the amplitude of Geld fluctuations about their
saddle-point values are small, so a gradient expansion of
II„„makes sense to obtain the effective action for low-
lying excitations. Since 0,& g 0, the low-lying modes are
massive. In other words, if we were to start by integrat-
ing out the short-distance fluctuations in the Bose field,
we would obtain an effective theory describing a massive
charged scalar field interacting with the CS field, and
a nonzero statistical parameter 0 that does not renor-
malize to zero at the one-loop level. Since 0 does not
renormalize at all beyond the one-loop level, this system
will have an energy gap to all orders in perturbation the-
ory. Consequently, perturbation theory about the saddle
point does not converge to anything that describes the
original electron system, which is gapless.

This failure of perturbation theory about the saddle
point can be understood as follows. The Hilbert space for
the original electron wave function is spanned by Slater
determinants of N electrons in the 2N single-particle
states in the lowest Landau level (ignoring Landau level
mixing). The electron wave function is thus a sum over
N products (z, —z~) times exponential factors. Thus,
the wave function vanishes as (z, —z~) as two electrons
are brought towards one another. We then perform the
singular gauge transformation to obtain the equivalent
boson wave function. The gauge transformation only
changes the relative phases of the wave function, which
will now contain factors ~z; —z~~. The singular gauge
transformation maps the original analytic electron wave
function in the lowest Landau level onto a nonanalytic
boson wave function. Thus, the wave function so ob-
tained does not have an expansion in states in the low-
est Landau level alone. On the other hand, the starting
point for perturbation theory is the homogeneous v = 1
boson solution. The wave function of this state Ci for
v = 1 bosons in the large-Vo limit is a product of factors
(z;—zz) and z,'. , times the exponential factors, which has a
completely different nonanalytic structure. We therefore
speculate that the failure of perturbation theory about
the saddle point corresponds to the fact that the Vo bo-
son wave function at v = 1 is outside the radius of con-
vergence of perturbation expansions about the (exact)
nonanalytic boson wave function.

In conclusion, we have argued that interacting hard-
core bosons exhibit a v = 1 IQHE, contrary to expec-
tations. As a consequence, perturbation theory about
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the saddle point of the equivalent CS boson system at
v = 1 obtained &om a singular gauge transformation
of an electron system at v = I/2 fails completely. The
reason is that the saddle-point approximation describes
an incompressible v = 1 hard-core boson system with
an energy gap. When fluctuations at the one-loop level
about the saddle point are included, the statistical pa-
rameter remains nonzero, and it does not renormalize
beyond the one-loop level. Therefore, the system has
an energy gap and remains incompressible to all orders

in perturbation theory. This shows explicitly that the
rather crude saddle-point approximation can give rise to
completely unphysical results.

We would like to thank the National Science Founda-
tion for its support through Grant No. DMR93-01433,
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Jonson at Chalmers University of Technology for their
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