281 research outputs found

    Quantum Simulation of Tunneling in Small Systems

    Full text link
    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution. We show that physically interesting simulations of tunneling using 2 qubits (i.e. on 4 lattice point grids) may be performed with 40 single and two-qubit gates. Approximately 70 to 140 gates are needed to see interesting tunneling dynamics in three-qubit (8 lattice point) simulations.Comment: 4 pages, 2 figure

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    KIC 3858884: a hybrid {\delta} Sct pulsator in a highly eccentric eclipsing binary

    Full text link
    The analysis of eclipsing binaries containing non-radial pulsators allows: i) to combine two different and independent sources of information on the internal structure and evolutionary status of the components, and ii) to study the effects of tidal forces on pulsations. KIC 3858884 is a bright Kepler target whose light curve shows deep eclipses, complex pulsation patterns with pulsation frequencies typical of {\delta} Sct, and a highly eccentric orbit. We present the result of the analysis of Kepler photometry and of high resolution phaseresolved spectroscopy. Spectroscopy yielded both the radial velocity curves and, after spectral disentangling, the primary component effective temperature and metallicity, and line-of-sight projected rotational velocities. The Kepler light curve was analyzed with an iterative procedure devised to disentangle eclipses from pulsations which takes into account the visibility of the pulsating star during eclipses. The search for the best set of binary parameters was performed combining the synthetic light curve models with a genetic minimization algorithm, which yielded a robust and accurate determination of the system parameters. The binary components have very similar masses (1.88 and 1.86 Msun) and effective temperatures (6800 and 6600 K), but different radii (3.45 and 3.05 Rsun). The comparison with the theoretical models evidenced a somewhat different evolutionary status of the components and the need of introducing overshooting in the models. The pulsation analysis indicates a hybrid nature of the pulsating (secondary) component, the corresponding high order g-modes might be excited by an intrinsic mechanism or by tidal forces.Comment: 18 pages, 14 figures, accepted for publication on Astronomy & Astrophysic

    Fermentation by Lactobacillus enhances anti-inflammatory effect of Oyaksungisan on LPS-stimulated RAW 264.7 mouse macrophage cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oyaksungisan (OY) has been used as a traditional drug in east-Asian countries. However, its effect on inflammation still remains unknown. In this study, to provide insight into the biological effects of OY and OY fermented by <it>Lactobacillus</it>, we investigated their effects on lipopolysaccharide (LPS)-mediated inflammation in the RAW 264.7 murine macrophage cells.</p> <p>Methods</p> <p>The investigation was focused on whether OY and fermented OYs could inhibit the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin (PG) E<sub>2 </sub>as well as the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, interleukin (IL)-6, nuclear factor (NF)-ÎșB and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW 264.7 cells.</p> <p>Results</p> <p>We found that OY inhibits a little LPS-induced NO, PGE<sub>2</sub>, TNF-α and IL-6 productions as well as the expressions of iNOS and COX-2. Interestingly, the fermentation significantly increased its inhibitory effect on the expression of all pro-inflammatory mediators. Furthermore, the fermented OYs exhibited elevated inhibition on the translocation of NF-ÎșB p65 through reduced IÎșBα degradation as well as the phosphorylations of extracellular signal-regulated kinase (ERK), p38 and c-Jun NH<sub>2</sub>-terminal kinase (JNK) MAPKs than untreated control or original OY.</p> <p>Conclusions</p> <p>Finally, the fermentation by <it>Lactobacillus </it>potentiates the anti-inflammatory effect of OY by inhibiting NF-ÎșB and MAPK activity in the macrophage cells.</p

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality

    Get PDF
    Background and purpose: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. Methods: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). Results: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P&lt;0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P&lt;0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. Conclusions: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications

    Get PDF

    Search for the direct production of charginos and neutralinos in final states with tau leptons in √s=13 TeV collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with at least two hadronically decaying tau leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of 36.1 fb−1, recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13TeV.Nosignificant deviation from the expected Standard Model background is observed. Limits are derived in scenarios of ˜χ+1 ˜χ−1 pair production and of ˜χ±1 ˜χ02 and ˜χ+1 ˜χ−1 production in simplified models where the neutralinos and charginos decay solely via intermediate left-handed staus and tau sneutrinos, and the mass of the ˜ τL state is set to be halfway between the masses of the ˜χ±1 and the ˜χ01. Chargino masses up to 630 GeV are excluded at 95% confidence level in the scenario of direct production of ˜χ+1 ˜χ−1 for a massless ˜χ01. Common ˜χ±1 and ˜χ02 masses up to 760 GeV are excluded in the case of production of ˜χ±1 ˜χ02 and ˜χ+1 ˜χ−1 assuming a massless ˜χ01. Exclusion limits for additional benchmark scenarios with large and small mass-splitting between the ˜χ±1 and the ˜χ01 are also studied by varying the ˜ τL mass between the masses of the ˜χ±1 and the ˜χ01

    Measurement of the cross section for inclusive isolated-photon production in pp collisions at √s=13TeV using the ATLAS detector

    Get PDF
    Inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13TeVis studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2fb−1. The cross section is measured as a function of the photon transverse energy above 125GeVin different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data

    Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A measurement of the production cross section for two isolated photons in proton-proton collisions at a center-of-mass energy of √s=8 TeV is presented. The results are based on an integrated luminosity of 20.2 fb−1 recorded by the ATLAS detector at the Large Hadron Collider. The measurement considers photons with pseudorapidities satisfying |ηγ|40GeV and EÎłT,2>30 GeV for the two leading photons ordered in transverse energy produced in the interaction. The background due to hadronic jets and electrons is subtracted using data-driven techniques. The fiducial cross sections are corrected for detector effects and measured differentially as a function of six kinematic observables. The measured cross section integrated within the fiducial volume is 16.8 ± 0.8  pb . The data are compared to fixed-order QCD calculations at next-to-leading-order and next-to-next-to-leading-order accuracy as well as next-to-leading-order computations including resummation of initial-state gluon radiation at next-to-next-to-leading logarithm or matched to a parton shower, with relative uncertainties varying from 5% to 20%
    • 

    corecore