1,426 research outputs found
Photo-excited semiconductor superlattices as constrained excitable media: Motion of dipole domains and current self-oscillations
A model for charge transport in undoped, photo-excited semiconductor
superlattices, which includes the dependence of the electron-hole recombination
on the electric field and on the photo-excitation intensity through the
field-dependent recombination coefficient, is proposed and analyzed. Under dc
voltage bias and high photo-excitation intensities, there appear self-sustained
oscillations of the current due to a repeated homogeneous nucleation of a
number of charge dipole waves inside the superlattice. In contrast to the case
of a constant recombination coefficient, nucleated dipole waves can split for a
field-dependent recombination coefficient in two oppositely moving dipoles. The
key for understanding these unusual properties is that these superlattices have
a unique static electric-field domain. At the same time, their dynamical
behavior is akin to the one of an extended excitable system: an appropriate
finite disturbance of the unique stable fixed point may cause a large excursion
in phase space before returning to the stable state and trigger pulses and wave
trains. The voltage bias constraint causes new waves to be nucleated when old
ones reach the contact.Comment: 19 pages, 8 figures, to appear in Phys. Rev.
Electrically tunable GHz oscillations in doped GaAs-AlAs superlattices
Tunable oscillatory modes of electric-field domains in doped semiconductor
superlattices are reported. The experimental investigations demonstrate the
realization of tunable, GHz frequencies in GaAs-AlAs superlattices covering the
temperature region from 5 to 300 K. The orgin of the tunable oscillatory modes
is determined using an analytical and a numerical modeling of the dynamics of
domain formation. Three different oscillatory modes are found. Their presence
depends on the actual shape of the drift velocity curve, the doping density,
the boundary condition, and the length of the superlattice. For most bias
regions, the self-sustained oscillations are due to the formation, motion, and
recycling of the domain boundary inside the superlattice. For some biases, the
strengths of the low and high field domain change periodically in time with the
domain boundary being pinned within a few quantum wells. The dependency of the
frequency on the coupling leads to the prediction of a new type of tunable GHz
oscillator based on semiconductor superlattices.Comment: Tex file (20 pages) and 16 postscript figure
Nonlinear stochastic discrete drift-diffusion theory of charge fluctuations and domain relocation times in semiconductor superlattices
A stochastic discrete drift-diffusion model is proposed to account for the
effects of shot noise in weakly coupled, highly doped semiconductor
superlattices. Their current-voltage characteristics consist of a number stable
multistable branches corresponding to electric field profiles displaying two
domains separated by a domain wall. If the initial state corresponds to a
voltage on the middle of a stable branch and a sudden voltage is switched so
that the final voltage corresponds to the next branch, the domains relocate
after a certain delay time. Shot noise causes the distribution of delay times
to change from a Gaussian to a first passage time distribution as the final
voltage approaches that of the end of the first current branch. These results
agree qualitatively with experiments by Rogozia {\it et al} (Phys. Rev. B {\bf
64}, 041308(R) (2001)).Comment: 9 pages, 12 figures, 2 column forma
Temperature dependence of current self-oscillations and electric field domains in sequential tunneling doped superlattices
We examine how the current--voltage characteristics of a doped weakly coupled
superlattice depends on temperature. The drift velocity of a discrete drift
model of sequential tunneling in a doped GaAs/AlAs superlattice is calculated
as a function of temperature. Numerical simulations and theoretical arguments
show that increasing temperature favors the appearance of current
self-oscillations at the expense of static electric field domain formation. Our
findings agree with available experimental evidence.Comment: 7 pages, 5 figure
Chaotic dynamics of electric-field domains in periodically driven superlattices
Self-sustained time-dependent current oscillations under dc voltage bias have
been observed in recent experiments on n-doped semiconductor superlattices with
sequential resonant tunneling. The current oscillations are caused by the
motion and recycling of the domain wall separating low- and high-electric-
field regions of the superlattice, as the analysis of a discrete drift model
shows and experimental evidence supports. Numerical simulation shows that
different nonlinear dynamical regimes of the domain wall appear when an
external microwave signal is superimposed on the dc bias and its driving
frequency and driving amplitude vary. On the frequency - amplitude parameter
plane, there are regions of entrainment and quasiperiodicity forming Arnol'd
tongues. Chaos is demonstrated to appear at the boundaries of the tongues and
in the regions where they overlap. Coexistence of up to four electric-field
domains randomly nucleated in space is detected under ac+dc driving.Comment: 9 pages, LaTex, RevTex. 12 uuencoded figures (1.8M) should be
requested by e-mail from the autho
Current-voltage characteristic and stability in resonant-tunneling n-doped semiconductor superlattices
We review the occurrence of electric-field domains in doped superlattices
within a discrete drift model. A complete analysis of the construction and
stability of stationary field profiles having two domains is carried out. As a
consequence, we can provide a simple analytical estimation for the doping
density above which stable stable domains occur. This bound may be useful for
the design of superlattices exhibiting self-sustained current oscillations.
Furthermore we explain why stable domains occur in superlattices in contrast to
the usual Gunn diode.Comment: Tex file and 3 postscript figure
Interactive Rhythmic Auditory Stimulation Reinstates Natural 1/f Timing in Gait of Parkinson's Patients
Parkinson's disease (PD) and basal ganglia dysfunction impair movement timing, which leads to gait instability and falls. Parkinsonian gait consists of random, disconnected stride times—rather than the 1/f structure observed in healthy gait—and this randomness of stride times (low fractal scaling) predicts falling. Walking with fixed-tempo Rhythmic Auditory Stimulation (RAS) can improve many aspects of gait timing; however, it lowers fractal scaling (away from healthy 1/f structure) and requires attention. Here we show that interactive rhythmic auditory stimulation reestablishes healthy gait dynamics in PD patients. In the experiment, PD patients and healthy participants walked with a) no auditory stimulation, b) fixed-tempo RAS, and c) interactive rhythmic auditory stimulation. The interactive system used foot sensors and nonlinear oscillators to track and mutually entrain with the human's step timing. Patients consistently synchronized with the interactive system, their fractal scaling returned to levels of healthy participants, and their gait felt more stable to them. Patients and healthy participants rarely synchronized with fixed-tempo RAS, and when they did synchronize their fractal scaling declined from healthy 1/f levels. Five minutes after removing the interactive rhythmic stimulation, the PD patients' gait retained high fractal scaling, suggesting that the interaction stabilized the internal rhythm generating system and reintegrated timing networks. The experiment demonstrates that complex interaction is important in the (re)emergence of 1/f structure in human behavior and that interactive rhythmic auditory stimulation is a promising therapeutic tool for improving gait of PD patients
Global Lithium Availability
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87046/1/j.1530-9290.2011.00359.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/87046/2/JIEC_359_sm_SuppMatS1.pd
Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30
- …