2,023 research outputs found

    ERCP and splenic injury

    Get PDF
    Abstractendoscopic Retrograde Colangiopancreatography (eRCP) is an invasive procedure with important complications that occurs in 5%-10% of the cases. The most frequent procedure related complications are: acute pancreatitis, hemorrhage, perforation and infection. an infrequent but potentially life threatening eRCP complication is the splenic injury, with very few cases reported in the literature. We report a patient with cholecholithiasis and biliary pancreatitis who was diagnosed with a subcapsular splenic laceration a few hours after an eRCP. Clinicians should be alerted to this potential post-procedure complication associated with eRCP

    Optimization of the efficiency in an induction machine drive by algorithm based on the interior point method

    Full text link
    [EN] This work optimizes the efficiency of the squirrel cage type Inverter-Induction Machine (IM) system, using an algorithm based on the Interior Point Method (IPM), where the input variables are the electromagnetic torque and the rotor speed at steady state,and as outputs the optimal efficiency and slip values are obtained. The optimum rotor flux value is calculated, which is used as a reference in the flux control loop, in the direct control vector method of the IM. Simulation results are obtained where the increase in efficiency is observed in low load states. The experimental installation used in the implementation of the vector control with maximum system efficiency is described, and the experimental results obtained are shown. A discussion is carried out on the results and the use of the Interior Point Optimization Method.[ES] En este trabajo se realiza la optimización de la eficiencia del sistema  Inversor-Máquina de Inducción (MI) del tipo jaula de ardilla, utilizando un algoritmo basado en el Método de Punto Interior (MPI), donde las variables de entrada son el par electromagnético y la velocidad del rotor en estado estacionario, y como salidas se obtienen los valores de la eficiencia óptima y del deslizamiento. Se calcula el valor del flujo óptimo del rotor que se utiliza como referencia en el lazo de control del flujo, en el control vectorial método directo de la MI. Se obtienen resultados de simulación donde se observa el incremento de la eficiencia en estados de baja carga. Se describe la instalación experimental usada en la implementación del control vectorial con máxima eficiencia del sistema, y se muestran los resultados experimentales obtenidos. Se realiza una discusión sobre los resultados y la utilización del Método de Optimización de Punto Interior.Instituto Politécnico Nacional (IPN), proyecto multidisciplinario registro número 1995.Pacheco-Montiel, J.; Badaoui, M.; Rodríguez-Rivas, J.; Alvarado-Farías, JM.; Carranza-Castillo, O.; Ortega-González, R. (2021). Optimización de la eficiencia en el accionamiento de una máquina de inducción mediante algoritmo basado en el método de punto interior. Revista Iberoamericana de Automática e Informática industrial. 18(4):336-346. https://doi.org/10.4995/riai.2020.13418OJS336346184Andréasson, N., Evgrafov, A., Patriksson, M, 2020. An Introduction to Continuous Optimization Fundations & Fundamental Algorithms. Dover Publications.Benson, H. Y., Shanno, D. F, 2014. Interior-point methods for nonconvex nonlinear programming: cubic regularization. Comput Optim Appl, 58:323-346. https://doi.org/10.1007/s10589-013-9626-8Borisevich, A., and Schullerus, G, 2016. Energy Efficient Control of an Induction Machine Under Torque Step Changes. IEEE Trans. on Energy Conv., vol. 31, no. 4, pp. 1295-1303, December. https://doi.org/10.1109/TEC.2016.2561307Capitanescu, F., Wehenkel, L., 2013. Experiments with the interior-point method for solving large scale optimal power flow problems. Electric Power Systems Research, vol. 95, pp. 276-283. https://doi.org/10.1016/j.epsr.2012.10.001Casacio, L., Lyra, C., Oliveira, A.R.L, 2019. Interior point methods for power flow optimization with security constraints. Intl. Trans. in Op. Res. 26 (2019) 364-378. https://doi.org/10.1111/itor.12279Colín, E. A. O., González, I. H. G., Rivas, J. J. R., Castillo, O. C., González, R. O., Caporal, R. M., 2017. Implementación del Algoritmo Sünter-Clare en un Convertidor Matricial 3x3. Revista Iberoamericana de Automática e Informática Industrial (RIAI), vol. 14, no. 4, pp. 446-454, Oct.-Dic. https://doi.org/10.1016/j.riai.2017.06.002De Almeida, A. T., Ferreira, F. J. T. E., Duarte, A. Q, 2014. Technical and Economical Considerations on Super High-Efficiency Three-Phase Motors. IEEE Trans. on Ind. App., vol. 50, no. 2, pp. 1274-1285, March/April. https://doi.org/10.1109/TIA.2013.2272548Eftekhari, S. R., Davari, S. A., Naderi, P., García C., Rodriguez, J, 2020. Robust Loss Minimization for Predictive Direct Torque and Flux Control of an Induction Motor With Electrical Circuit Model. IEEE Trans. on Power Electronics, vol. 35, no. 5, pp. 5417-5426, May. https://doi.org/10.1109/TPEL.2019.2944190Farhat, I. A., El-Hawary, M. E, 2009. Interior point methods application in optimum operational scheduling of electric power systems. IET Generation, Transmission & Distribution, vol. 3, Iss. 11, pp. 1020-1029. https://doi.org/10.1049/iet-gtd.2008.0573IEA International Energy Agency. World Energy Outlook, 2018. IEA, Paris 2018. 01/2020. https://www.iea.org/reports/world-energy-outlook-2018.IEC 60034-30-1, 2014. Efficiency classes of line operated AC motors (IE-code), Edition 1.0.Mallik, S., Mallik, K., Barman, A., Maiti, D., Biswas, S. K., Deb, N. K., Basu, S, 2017. Efficiency and Cost Optimized Design of an Induction Motor Using Generic Algorithm. IEEE Trans. on Ind. Appl., vol. 64, no. 12, pp. 9854-9863, December. https://doi.org/10.1109/TIE.2017.2703687McElveen, R., Melfi, M., McFarland, J, 2019. Improved Characterization of Polyphase Induction Motor Losses: Test Standards Must Be Modified to Improve Efficiency Optimization. IEEE Ind. Appl. Magazine., pp. 61-68, Nov./Dec. https://doi.org/10.1109/MIAS.2018.2875208Rao, N., and Chamund, D, 2014. Calculating Power Losses in an IGBT Module. Application Note. DYNEX Power Control through Innovation.Rathore, A. K., Holtz, J., Boller, T, 2013. Generalized Optimal Pulsewidth Modulation of Multilevel Inverters for Low-Switching-Frequency Control of Medium-Voltage High-Power Industrial AC Drives. IEEE Trans. on Ind. Electronics, vol. 60, no. 10, pp. 4215-4224, Oct. https://doi.org/10.1109/TIE.2012.2217717Seung-Ki, S, 2011. Control of Electric Machine Drive Systems. IEEE Press & Wiley. Printed in the USA.Salomon, C. P., Sant'Ana, W. C., Borges da Silva, L. E., Torres, G. L., Bonaldi, E. L., Olveira, L. E. L., Borges da Silva, J. G, 2015. Induction Motor Efficiency Evaluation Using a New Concept of Stator Resistance. IEEE Trans. on Inst. and Meas., vol. 64, no. 11, pp. 2908-2917, November. https://doi.org/10.1109/TIM.2015.2437632Santos, V. S., Felipe, P. R. V, Sarduy, J. R. G., Lemozy, N. A. L., Jurado, A., Quispe, E. C, 2015. Procedure for Determining Induction Motor Efficiency Working Under Distorted Grid Voltages. IEEE Trans. on Energy Conv., vol. 30, no. 1, pp. 331-339, March. https://doi.org/10.1109/TEC.2014.2335994Shukla, S., and Singh, B, 2017. Solar Powered Sensorless Induction Motor Drive with Improved Efficiency forWater Pumping. IET Power Electronics, vol. 11, issue 3, pp. 1-11, March. https://doi.org/10.1049/iet-pel.2017.0452Stumper, J. F., Dötlinger, A., Kennel, R, 2013. Loss Minimization of Induction Machines in Dynamic Operation. IEEE Trans. on Energy Conv., vol. 28, no. 3, pp. 726-735, September. https://doi.org/10.1109/TEC.2013.2262048Sul, S. K., 2011. Control of Electric Machine Drive Systems. IEEE Press-Wiley & Sons. https://doi.org/10.1002/9780470876541Taheri, A., Rahmati, A., Kaboli, S, 2012. Efficiency Improvement in DTC of Six-Phase Induction Machine by Adaptive Gradient Descent of Flux. IEEE Trans. on Power Electronics, vol. 27, no. 3, pp. 1552-1562, March. https://doi.org/10.1109/TPEL.2011.2163420Vanderbei, R. J., Shanno, D. F, 1999. Interior-point methods for nonconvex nonlinear programming. Computational Optimization and Applications, 13, 31-252. https://doi.org/10.1023/A:1008677427361Vural, A. M, 2015. Interior point-based slack-bus free-power flow solution for balanced islanded microgrids. Int. Trans. Electr. Energ. Syst, 26:968-992. https://doi.org/10.1002/etep.2117Xu, W., Hu, D., Lei, G., Zhu, J, 2019. System-Level Efficiency Optimization of a Linear Induction Motor Drive System. IEEE Trans. on Electrical Machines and Systems, vol. 3, no. 3, pp. 285-291, Sept. https://doi.org/10.30941/CESTEMS.2019.00037Xu, W., Xiao, X., Du, G., Zou, J, 2020. Comprehensive Efficiency Optimization of Linear Induction Motors for Urban Transit. IEEE Trans. on Vehicular Tech., vol. 69, no. 1, pp. 131-139, January. https://doi.org/10.1109/TVT.2019.295395

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015)

    Get PDF
    Contributions of the Pierre Auger Collaboration to the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The NetherlandsComment: 24 proceedings, the 34th International Cosmic Ray Conference, 30 July - 6 August 2015, The Hague, The Netherlands; will appear in PoS(ICRC2015

    Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions

    Full text link
    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) < 0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95% confidence level.Comment: 10 pages, 3 figure

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
    corecore