167 research outputs found

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Lanthanum from a modified clay used in eutrophication control is bioavailable to the marbled crayfish (Procambarus fallax f. virginalis)

    Get PDF
    To mitigate eutrophication in fresh standing waters the focus is on phosphorus (P) control, i.e. on P inflows to a lake as well as a lake's sediment as internal P source. The in-lake application of the lanthanum (La) modified clays – i.e. La modified bentonite (Phoslock) or La modified kaolinite, aim at dephosphatising the water column and at reducing the release of P from a lake's sediment. Application of these clays raises the question whether La from these clays can become bioavailable to biota. We investigated the bioavailability of La from Phoslock in a controlled parallel groups experiment in which we measured the La in carapace, gills, ovaries, hepatopancreas and abdominal muscle after 0, 14 and 28 days of exposure to Phoslock. Expressing the treatment effect as the difference of the median concentration between the two treatment groups (Phoslock minus control group) yield the following effects, the plus sign (+) indicating an increase, concentrations in µg g-1 dry weight: Day 14: carapace +10.5 µg g-1, gills +112 µg g-1, ovaries +2.6 µg g-1, hepatopancreas +32.9 µg g-1 and abodminal muscle +3.2 µg g-1. Day 28: carapace +17.9 µg g-1; gills +182 µg g-1; ovaries +2.2 µg g-1; hepatopancreas +41.9 µg g-1 and abodminal muscle +7.6 µg g-1, all effects were statistically significant. As La from Phoslock is bio-available to and taken up by the marbled crayfishes (Procambarus fallax f. virginalis), we advocate that the application of in-lake chemical water treatments to mitigate eutrophication should be accompanied by a thorough study on potential side effect

    Tracker Operation and Performance at the Magnet Test and Cosmic Challenge

    No full text
    During summer 2006 a fraction of the CMS silicon strip tracker was operated in a comprehensive slice test called the Magnet Test and Cosmic Challenge (MTCC). At the MTCC, cosmic rays detected in the muon chambers were used to trigger the readout of all CMS sub-detectors in the general data acquisition system and in the presence of the 4 T magnetic field produced by the CMS superconducting solenoid. This document describes the operation of the Tracker hardware and software prior, during and after data taking. The performance of the detector as resulting from the MTCC data analysis is also presented

    Performance studies of the CMS strip tracker before installation

    Get PDF
    Peer reviewe

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Cost analysis of an integrated disease surveillance and response system: case of Burkina Faso, Eritrea, and Mali

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Communicable diseases are the leading causes of illness, deaths, and disability in sub-Saharan Africa. To address these threats, countries within the World Health Organization (WHO) African region adopted a regional strategy called Integrated Disease Surveillance and Response (IDSR). This strategy calls for streamlining resources, tools, and approaches to better detect and respond to the region's priority communicable disease. The purpose of this study was to analyze the incremental costs of establishing and subsequently operating activities for detection and response to the priority diseases under the IDSR.</p> <p>Methods</p> <p>We collected cost data for IDSR activities at central, regional, district, and primary health care center levels from Burkina Faso, Eritrea, and Mali, countries where IDSR is being fully implemented. These cost data included personnel, transportation items, office consumable goods, media campaigns, laboratory and response materials and supplies, and annual depreciation of buildings, equipment, and vehicles.</p> <p>Results</p> <p>Over the period studied (2002–2005), the average cost to implement the IDSR program in Eritrea was 0.16percapita,0.16 per capita, 0.04 in Burkina Faso and 0.02inMali.Ineachcountry,themeanannualcostofIDSRwasdependentonthehealthstructurelevel,rangingfrom0.02 in Mali. In each country, the mean annual cost of IDSR was dependent on the health structure level, ranging from 35,899 to 69,920attheregionlevel,69,920 at the region level, 10,790 to 13,941atthedistrictlevel,and13,941 at the district level, and 1,181 to $1,240 at the primary health care center level. The proportions spent on each IDSR activity varied due to demand for special items (e.g., equipment, supplies, drugs and vaccines), service availability, distance, and the epidemiological profile of the country.</p> <p>Conclusion</p> <p>This study demonstrates that the IDSR strategy can be considered a low cost public health system although the benefits have yet to be quantified. These data can also be used in future studies of the cost-effectiveness of IDSR.</p

    Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter

    Get PDF
    VertaisarvioitupeerReviewe

    Performance of CMS hadron calorimeter timing and synchronization using test beam, cosmic ray, and LHC beam data

    Get PDF
    This paper discusses the design and performance of the time measurement technique and of the synchronization systems of the CMS hadron calorimeter. Time measurement performance results are presented from test beam data taken in the years 2004 and 2006. For hadronic showers of energy greater than 100 GeV, the timing resolution is measured to be about 1.2 ns. Time synchronization and out-of-time background rejection results are presented from the Cosmic Run At Four Tesla and LHC beam runs taken in the Autumn of 2008. The inter-channel synchronization is measured to be within ±2 ns

    Commissioning and performance of the CMS silicon strip tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPDuring autumn 2008, the Silicon Strip Tracker was operated with the full CMS experiment in a comprehensive test, in the presence of the 3.8 T magnetic field produced by the CMS superconducting solenoid. Cosmic ray muons were detected in the muon chambers and used to trigger the readout of all CMS sub-detectors. About 15 million events with a muon in the tracker were collected. The efficiency of hit and track reconstruction were measured to be higher than 99% and consistent with expectations from Monte Carlo simulation. This article details the commissioning and performance of the Silicon Strip Tracker with cosmic ray muons.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore