432 research outputs found

    Kaneohe Fishpond Master Plan

    Get PDF
    master plan intended to identify goals, directions, and measures to restore remaining fishponds for uses consistent with their historic function and intergrit

    Enhancing water security in Southern Africa by tackling nitrate contamination of aquifers and unraveling links to climate change and sanitation: A case from Ramotswa, Botswana.

    Get PDF
    Full list of oligonucleotides that were annealed and used in EMSA studies with cdPadR1. The .xlsx file includes the arbitrary number assigned to each oligonucleotide (column A); the genomic placement of the minimum nucleotide (column B); length in base pairs (bp, column C); indication of binding (+) or no binding detected (-) (column D); locus tag associated with the gene downstream of the oligonucleotide (column E); the annotated gene downstream of the oligonucleotide (column F); and the oligonucleotide sequence 5′ to 3′ (column G). (XLSX 50 kb

    Internalizing animals and ecosystems in social citizenship and social policy:From political community to political country

    Get PDF
    The aim of this editorial is to explore, conceptualize, and research the need to internalize both animals and ecosystems in our understanding of social citizenship and social policy. This editorial should be seen as a brief overview of the themes that should be covered in the contributions to the Special Issue, “Internalizing Animals and Ecosystems in Social Citizenship and Social Policy: From Political Community to Political Country”. This Special Issue argues the importance of integrating animals and ecosystems as a way to re-politicize humans’ social relation with both animals and our ecosystem as in sustainable development and social policy. If environmental policy becomes social policy, we would re-construct social citizenship to include consideration for animals and ecosystems as integral part of social policy. This expansion in scope is a progression from seeing humans as part of a political community to becoming more involved in their political country. This aligns with the concept of Country—an all-encompassing term in Australia, involving a people’s territory, land, water, biological resources, the complex obligations and relationships involved

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Can plantations develop understory biological and physical attributes of naturally regenerated forests?

    Get PDF
    With an increasing proportion of natural forests being replaced by plantations, there is a need to determine their potential to fulfill ecological purposes other than wood production. This study evaluated the extent to which deciduous and coniferous plantations develop understory attributes comparable to those of naturally regenerated stands. A functional group approach was used to synthesise species responses in terms of their ecological traits. Multivariate analyses of ecological traits revealed 16 emergent groups that shared common traits associated with a similar life history strategy. Responses of these groups, understory structure, and understory environmental conditions to plantation types and stand stages were analyzed and compared to naturally regenerated stands. Clear associations of trait responses to stand developmental stages and plantation types emerged. Light-demanding and wind-dispersed species groups were associated with early-successional stages, while woody groups, ferns and ant-dispersed spring-flowering herbs were associated with late-successional stages. Analyses also revealed an indicator group associated with old naturally regenerated forest. The understory functional groups and environmental conditions of deciduous plantations converged toward those of old naturally regenerated forests. However, understory structure in deciduous plantations remained poorly developed and richness of the indicator group was low compared to unplanted stands. Conifer plantations, currently the most common plantation type in the northern hardwood biome, showed a completely different pathway of understory development. Modifications to current plantation management practices are proposed to help recreate or maintain natural understory biological and physical attributes

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    corecore