44 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcription factor binding to DNA requires both an appropriate binding element and suitably open chromatin, which together help to define regulatory elements within the genome. Current methods of identifying regulatory elements, such as promoters or enhancers, typically rely on sequence conservation, existing gene annotations or specific marks, such as histone modifications and p300 binding methods, each of which has its own biases.</p> <p>Results</p> <p>Herein we show that an approach based on clustering of transcription factor peaks from high-throughput sequencing coupled with chromatin immunoprecipitation (Chip-Seq) can be used to evaluate markers for regulatory elements. We used 67 data sets for 54 unique transcription factors distributed over two cell lines to create regulatory element clusters. By integrating the clusters from our approach with histone modifications and data for open chromatin, we identified general methylation of lysine 4 on histone H3 (H3K4me) as the most specific marker for transcription factor clusters. Clusters mapping to annotated genes showed distinct patterns in cluster composition related to gene expression and histone modifications. Clusters mapping to intergenic regions fall into two groups either directly involved in transcription, including miRNAs and long noncoding RNAs, or facilitating transcription by long-range interactions. The latter clusters were specifically enriched with H3K4me1, but less with acetylation of lysine 27 on histone 3 or p300 binding.</p> <p>Conclusion</p> <p>By integrating genomewide data of transcription factor binding and chromatin structure and using our data-driven approach, we pinpointed the chromatin marks that best explain transcription factor association with different regulatory elements. Our results also indicate that a modest selection of transcription factors may be sufficient to map most regulatory elements in the human genome.</p

    Predictors of pulmonary failure following severe trauma: a trauma registry-based analysis

    Get PDF
    Background: The incidence of pulmonary failure in trauma patients is considered to be influenced by several factors such as liver injury. We intended to assess the association of various potential predictors of pulmonary failure following thoracic trauma and liver injury. Methods: Records of 12,585 trauma patients documented in the TraumaRegister DGU® of the German Trauma Society were analyzed regarding the potential impact of concomitant liver injury on the incidence of pulmonary failure using uni- and multivariate analyses. Pulmonary failure was defined as pulmonary failure of ≥ 3 SOFA-score points for at least two days. Patients were subdivided according to their injury pattern into four groups: group 1: AIS thorax < 3; AIS liver < 3; group 2: AIS thorax ≥ 3; AIS liver < 3; group 3: AIS thorax < 3; AIS liver ≥ 3 and group 4: AIS thorax ≥ 3; AIS liver ≥ 3. Results: Overall, 2643 (21%) developed pulmonary failure, 12% (n= 642) in group 1, 26% (n= 697) in group 2, 16% (n= 30) in group 3, and 36% (n= 188) in group 4. Factors independently associated with pulmonary failure included relevant lung injury, pre-existing medical conditions (PMC), sex, transfusion of more than 10 units of packed red blood cells (PRBC), Glasgow Coma Scale (GCS) ≤ 8, and the ISS. However, liver injury was not associated with an increased risk of pulmonary failure following severe trauma in our setting. Conclusions: Specific factors, but not liver injury, were associated with an increased risk of pulmonary failure following trauma. Trauma surgeons should be aware of these factors for optimized intensive care treatment

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Structural links between the renal stem/progenitor cell niche and the organ capsule

    No full text
    A special feature of the renal stem/progenitor cell niche is its always close neighborhood to the capsule during organ development. To explore this link, neonatal kidney was investigated by histochemistry and transmission electron microscopy. For adequate contrasting, fixation of specimens was performed by glutaraldehyde including tannic acid. The immunohistochemical data illustrate that renal stem/progenitor cells are not distributed randomly but are positioned specially to the capsule. Epithelial stem/progenitor cells are found to be enclosed by the basal lamina at a collecting duct (CD) ampulla tip. Only few layers of mesenchymal cells are detected between epithelial cells and the capsule. Most impressive, numerous microfibers reacting with soybean agglutinin, anti-collagen I and III originate from the basal lamina at a CD ampulla tip and line between mesenchymal stem/progenitor cells to the inner side of the capsule. This specific arrangement holds together both types of stem/progenitor cells in a cage and fastens the niche as a whole at the capsule. Electron microscopy further illustrates that the stem/progenitor cell niche is in contact with a tunnel system widely spreading between atypical smooth muscle cells at the inner side of the capsule. It seems probable that stem/progenitor cells are supplied here by interstitial fluid
    corecore